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Stochastic Morphological
Modeling of Random Multiphase
Materials
A short-range-correlation (SRC) model is introduced in the framework of Markov/Gibbs
random field theory to characterize and simulate random media. The Metropolis spin-flip
algorithm is applied to build a robust simulator for multiphase random materials.
Through development of the SRC model, several crucial conceptual ambiguities are clari-
fied, and higher-order statistical simulation of random materials becomes computation-
ally feasible. In the numerical examples, second- and third-order statistical simulations
are demonstrated for biphase random materials, which shed light on the relationship
between nth-order correlation functions and morphological features. Based on the obser-
vations, further conjectures are made concerning some fundamental morphological ques-
tions, particularly for future investigation of physical behavior of random media. It is
expected that the SRC model can also be extended to third- and higher-order simulations
of non-Gaussian stochastic processes such as wind pressure, ocean waves, and earth-
quake accelerations, which is an important research direction for high fidelity simulation
of physical processes. �DOI: 10.1115/1.2957598�

1 Introduction
Physical behavior of natural and synthetic complex heteroge-

neous materials has been a fundamental research topic in diverse
disciplines of geophysics, material science, chemical physics, bio-
medical engineering, etc. �1–3�. Examples of research interests
include transport, electromagnetic, and mechanical properties of
cellular solids, colloids, tissue, bone, porous rocks, soils, and
manufactured composites such as foamed solids and polymer
blends. Modeling and design of complex materials across multiple
length and time scales is currently becoming one of the most
active engineering research topics; thanks to recent advances in
nanotechnology, multiscale modeling, and high-performance com-
puters. There are basically two essential issues in modeling of
stochastic morphology for complex heterogeneous materials:

1. characterization: appropriate translation of morphological
information, generally perceivable by human vision, into a
mathematically tractable model

2. simulation: applicability of a morphological model, i.e.,
whether the model enables convenient Monte Carlo genera-
tion of samples with desired configurations

A satisfactory morphological model should address both issues
successfully, and in this work such a model, namely, the short-
range-correlation �SRC� model, is established explicitly in the
framework of Markov/Gibbs random field theory and is formally
introduced into random media applications. Cross-disciplinary ex-
pertise involved in this study includes stochastic processes and
random field theory, mathematical morphology, statistical me-
chanics, perception, computer vision, signal processes, texture
analysis, statistical geology, pattern recognition, and optics �4–8�.

Through development of the SRC model, several crucial con-
ceptual ambiguities are clarified, and higher-order statistical simu-
lation of random materials becomes computationally feasible. The
SRC model takes advantage of a Metropolis spin-flip algorithm
with the aim of minimizing the SRC energy �a descriptor of the
error� of the simulated morphology. A similar approach was ap-

plied by Yeong and Torquato �9� to morphological simulation,
although that work differed from the current work in three ways.
First, in this study, morphologies are characterized through short-
range-correlation functions, instead of full-range ones, which cap-
tures essential morphological features and significantly improves
computing efficiency. Second, the current algorithm allows more
efficient sample generation, which is the direct result of using a
spin-flip algorithm that allows the volume fraction to vary slightly
from sample to sample. Such variations in volume fraction are
realistic in light of the slight volume fraction variations that occur
in many real materials. Third, the current SRC energy measure, or
error measure, is based on the nth-order correlation functions. The
advantage to measuring the morphological energy �error� in terms
of the nth-order correlation functions is that the importance of
various order statistics can be identified directly from the results.
By applying the morphological energy optimization to other quan-
tities �such as lineal path functions�, the connection to the
nth-order statistics of the random process is not clear. In other
words, the most important order of statistics can be identified for
a given microstructure with a given application. In the numerical
examples, second- and third-order statistical simulations are dem-
onstrated for biphase random materials, which shed light onto the
relationship between nth-order correlation functions and morpho-
logical features. Based on the observations, further conjectures are
made, particularly for future investigation of physical behavior of
random media.

The basic premise of this work is that the morphology of a
random microstructure can be described as a stochastic process
that is completely defined by the multivariate distribution, or ap-
proximately characterized with partial statistical information such
as a hierarchical order of statistical moments or correlation func-
tions. Existing models on morphologies of random materials ba-
sically follow two directions: translation models and correlation
models, which are described in the sections that follow.

1.1 Translation Model. Even if the multivariate distribution
of a stochastic process is fully known, no direct methods are avail-
able for simulating such a process in general. Among the few that
can be simulated, most are directly tied to Gaussian multivariate
distribution, and the rest either present formidable computational
problems or are too restrictive to be of general interest �8�. The
translation model, pointwise transforming a Gaussian random
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field into a non-Gaussian one, was first studied in Gaussian input
nonlinear systems in the field of signal processing in the 1950s,
and was mathematically developed in the bivariate translation sys-
tem �10�. The model was applied to multivariate systems �11�,
porous media �7,12–14�, random materials �15–18�, and general-
ized to level-cut filtered Poisson fields �19�. The translation model
has two limitations: the inflexible multivariate distribution struc-
ture, and the requirement of non-negative definiteness of the un-
derlying Gaussian process, which limit the applicability of the
model �20,21�. These restrictions have been further observed in
Ref. �22�, where for general real-life random media morphologies
the translation model does not often meet the requirement of non-
negative definiteness. This presents a major challenge in applying
translation models to random media; in fact, for many random
media, such models are inadequate to accurately represent the
microstructural features such as shape or connectivity.

1.2 Correlation Models. Making use of correlation functions
to approximate a target multivariate distribution alleviates many
of the limitations described above. With correlation models, a
morphological characterization problem involving randomness is
effectively converted into a numerical optimization problem. The
relationship between nth-order statistics and random images was
investigated early in vision research �23�, and afterwards the
second-order statistics, i.e., gray-level co-occurrence models,
were extensively applied to texture analysis and image processing
�Ref. �5� and references therein�. In random media research, cor-
relation models and relevant simulation techniques were given
attention only recently �9,24�, and then were applied to simulation
of particulate media �25� and microstructures �26�.

With respect to the characterization issue, correlation models
effectively translate morphological information into a hierarchical
order of correlation functions. Meanwhile, estimation of correla-
tion functions from a target configuration is also straightforward.
In this regard, however, there accompany some interesting and
challenging questions, i.e., how and which order of correlation
functions connects with what characteristics of a specific mor-
phology, and which is the lowest order of correlation functions
that is sufficient for a certain level of engineering approximation,
such as effective physical properties. These questions will be ad-
dressed with some conjectures in the numerical examples and
conclusions of this paper. There is also a relevant uniqueness
problem first posed as Julesz conjecture �23,27�, i.e., whether the
first two orders of statistics are adequate to visually determine a
texture. Intricacy of this uniqueness problem is mainly due to
ambiguous definition of texture and the conceptual confusion be-
tween ensemble statistical correlation functions and single sample
deterministic correlation functions, as pointed out in Ref. �28�. In
the field of material simulation, the same ambiguity could lead to
unsuccessful applications of correlation models, as noted in Ref.
�29�.

The simulation issue, i.e., how to realize a configuration sample
based on given lower-order correlation functions, is an interesting
inverse problem and a global optimization problem. For the case
of multiphase materials, the problem more specifically becomes
that of combinatorial optimization. It is worth noting that the op-
timization algorithm based on the full range of the second-order
correlation function from a single sample leads to deterministic
image reconstruction, a problem intensively pursued in the field of
optics �30�; however, they are of no interest for stochastic simu-
lation and characterization of a random medium �31�. Short-
range-correlation matching allows a morphology to vary ran-
domly from sample to sample, by relaxing the requirement of a
strict match between the correlation functions of the original
sample and that of the simulated sample.

2 Short-Range-Correlation Model
The idea of short-range-correlation matching first appeared in

texture synthesis �32� for the purpose of information reduction. A

recent application of the idea is on random image simulation �33�,
where effectiveness of the method was not fully demonstrated due
to utilization of incomplete windowed correlation functions. A
crucial point of the SRC model is application of windowed corre-
lation functions, assuming long-range independence of morpholo-
gies. Such an assumption is justified when considering the differ-
ence between the ensemble �or true� correlation function and the
sample correlation function of a stochastic process. For instance,
the ensemble covariance function �normalized second-order cor-
relation function� will typically decay to zero as the lag vector
becomes larger, while the sample covariance function may be sig-
nificant even at long range. These apparent long-range dependen-
cies are not true correlation values, but they are the result of
numerical error arising from a finite sample. By windowing the
correlation, only the important values of the estimated correlation
function are retained, providing a more appropriate basis for es-
tablishing the energy �or error� of a simulated sample morphology.
This concept of short-range dependence is tied to those of corre-
lation length in stochastic process theory, neighborhood systems
in Markov random field theory, textural resolution in texture
analysis �32�, local roving window in vision research �34�, and
stochastic representative volume element �SRVE� in random me-
dia study �35�.

2.1 Markov and Gibbs Random Field Theory. To be con-
sistent with the computer simulation scheme and the usual image
processing modeling, the SRC morphological model in this study
is built onto a two-dimensional discrete lattice. Let S= �i �1� i
�M1 ·M2� index a discrete set of sites for a morphological set X
on a rectangular lattice M1�M2. In Markov random field theory,
a neighborhood system N means only neighboring sites or so-
called cliques have direct interactions on each other. The condi-
tional probability of the value xi is therefore conditioned only on
its neighborhood system N�S

P�xi�xS−�i�� = P�xi�xNi
� �1�

where the subscript S− �i� indicates the full lattice excluding site i.
The equivalence of Markov and Gibbs random field models,
known as the Hammersley–Clifford theorem �36�, makes statisti-
cal physics and spatial statistics closely linked. The set X becomes
a Gibbs random field on S and has a Gibbs multivariate distribu-
tion

P�x� =
e−U�x�/T

�
x�X

e−U�x�/T
�2�

where the energy U�x� is defined as

U�x� = �
n=1

Nc

Vn�x� �3�

Nc is the number of order of statistics to be included in the energy.
The nth-order potential Vn�x� will be defined further in the next
section. The “temperature” T in Eq. �2� is a parameter related to
the desired configuration. For example, if T→�, X tends to be
equally distributed, assigning a large number of morphological
configurations approximately equal probabilities, and if T→0, X
tends to concentrate at a specific value, assigning significant prob-
ability only to the global energy minimum. With given T and
Vn�x�, we can generate a specific morphological pattern by sam-
pling the configuration space X according to the distribution �2�.

Note that in the current work the nth-order potential is equiva-
lent to an error norm that measures differences between the
nth-order statistics in the original morphology and the simulated
morphology. Staying consistent with the nomenclature used in the
field of image analysis �4�, however, this error norm will be re-
ferred to as energy in the current work.
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2.2 Short-Range-Correlation Energy. In order to develop
an expression for the energy norm U�x�, the n-point correlation
function Sn�r1 , . . . ,rn� is used, which is defined as

Sn�r1, . . . ,rn� = �
x�X�

x1x2 ¯ xnP�x� �4�

In Eq. �4� r1 , . . . ,rn denote the spatial coordinates of the points
1 , . . . ,n in the configuration x, the set X� of which constitutes a
finite window in the lattice. Application of such a window is
equivalent to truncating to zero the value of the correlation func-
tion for all spatial coordinate pairs r1 , . . . ,rn that fall outside the
finite window size. Applying such a finite window indicates that
the correlation information within the window is not altered at all,
but the correlation function outside of the window is set to zero.
An advantage to applying this truncation as opposed to a moving-
average filter to the correlation function is that the slope at the
origin of the two-point correlation function is preserved to simu-
late the specific surface, an important morphological feature.
Other common moving-window functions such as Bartlett, Han-
ning, Gaussian, etc., are not considered in this study since these
windows can distort the short-range-correlation information.

For ergodic and homogeneous random fields up to the nth or-
der, as assumed in this study, Sn can be estimated from a single
configuration as

Sn�r2 − r1, . . . ,rn − r1� =
1

M1 · M2
�

�s��S

x�s�x�r2 − r1 + s�x

��r3 − r1 + s� ¯ x�rn − r1 + s� �5�

In Eq. �5�, when the sites at which x is evaluated fall outside of the
rectangular lattice M1�M2, either periodic conditions or other
appropriate conditions can be applied. A closely related definition
is the nth-order statistics Pn�x1 ,x2 , . . . ,xn� or n-gram statistics,
which is also termed as gray-level co-occurrence in textural analy-
sis. Obviously the information contained in the n-point correlation
function is a subset of that of the nth-order statistics.

The characteristics of a Gibbs random field are specified by
appropriate formulation of the nth-order potential Vn�x�, while
noting that sometimes different potential functions could lead to
the same Gibbs distribution. In the SRC model, we define the
potentials as metric norm of a distance between two windowed

correlation functions, such as a simulated one S̃n and a target Sn.
The first-order potential makes use of the first-order statistics, or
the full histogram f , not simply the mean value. For multiphase
materials, x takes values from a finite set D of gray levels, e.g., for
two-phase materials D= �0,1�. The first-order potential is there-
fore defined as

V1�x� = �1	 �
xi�D

�f�xi� − f̃�xi��p
1/p
�6�

where D is the set of possible gray levels in the multiphase ma-
terial. The second and third orders of the potentials are given
below and the rest follow the trend.

V2�x� = �2	�
�i,i��

N2

�S2�ri� − ri� − S̃2�ri� − ri��p
1/p

�7a�

V3�x� = �3	 �
�i,i�,i��

N3

�S3�ri� − ri,ri� − ri� − S̃3�ri� − ri,ri� − ri��p
1/p

�7b�

In Eqs. �7a� and �7b�, 1� p��, N2 indicates the pair set of the
SRC window, N3 indicates the triple set of the SRC window, and
�1, �2, and �3 are coefficients used to manipulate the contribu-
tions of each order of statistics to the total energy. For example,
�3 may be set to zero if only the first- and second-order statistics

are to be matched in the simulated morphology.
Let a function dp�x̃ ,x�=U�x̃� denote the distance between any

two configurations x , x̃�X, i.e., dp :X�X→R taking pairs of
morphological configurations into real numbers. In order to make
use of the SRC energy in subsequent simulations it is important to
establish first that it is truly a metric.

THEOREM. The short-range-correlation energy function dp :X
�X→R, as defined in Eqs. �4�, �7a�, and �7b�, is a metric on the
morphological set X.

Proof. By the definition of metric, there are four sufficient and
necessary conditions:

�i� dp�x , x̃��0 for every x , x̃�X
�ii� dp�x , x̃�=0 if and only if x= x̃
�iii� dp�x , x̃�=dp�x̃ ,x� for every x , x̃�X
�iv� dp�x , x̃��dp�x , x̃��+dp�x̃� , x̃� for every x , x̃ , x̃��X

Conditions �i�–�iii� are directly obtained from Eqs. �7a� and �7b�,
and Condition �iv� is derived by using Minkowski’s inequality
�37�. �

Clearly for a finite set D a metric space �dp ,X� is the �p space,
and as seen in Sec. 3 we confine algorithms to the �2 space that is
convenient for numerical operations. Having established a metric
for the SRC energy of a given morphology, an appropriate sam-
pling process must be established for generating simulated mor-
phologies.

2.3 Sampling Process. In Markov/Gibbs random field mod-
els, there are two well-established random sampling algorithms.
The Metropolis sampler �38� uses a Monte Carlo procedure to
generate a Markov chain of configurations, and acceptance of
each configuration change is based on Eq. �2�. The Gibbs sampler
�39� generates the next configuration using conditional probability
�1� instead of energy change. Both sampling algorithms have the
Gibbs distribution as equilibrium, as illustrated from the perspec-
tive of the Bayesian paradigm of maximum a posteriori �MAP�
estimation �40�. Based on an initial configuration x�0�, usually be-
ing white noise, the maximum problem is written as

max
X

P�x�x�0�� = max
X

P�x�0��x�P�x�
P�x�0��

�8�

Since white noise x�0� can be generally treated as independent
from the desired configuration, i.e.,

P�x�0��x� � P�x�0�� �9�

then Eq. �9� becomes

max
X

P�x�x�0�� � max
X

P�x� = max
X

e−�1/T�U�x� �10�

Therefore, generation of a desired configuration corresponds to
minimization of the energy U�x� in Eq. �2� with a fixed tempera-
ture T.

The Metropolis algorithm for finding the maximum probability
in Eq. �10� is the following:

�a� given target histogram f and correlation functions Sn ,n
=2,3 , . . .

�b� set SRC window size to be used for energy calculation
�c� initialize white noise x�0�

�d� calculate the initial SRC energy U�x�0�� using Eqs. �3�,
�7a�, and �7b�

�e� iteration step for configuration m

�i� generate x�m� based on perturbation of x�m−1�

�ii� calculate the SRC energy U�x�m�� using Eqs. �3�, �7a�,
and �7b�

�iii� �U�m�=U�x�m��−U�x�m−1��
�iv� q=min�1,e−�U�m�/T�
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�v� if uniform �0,1��q, then go to �i� to try another x�m�;
otherwise, x�m� is accepted and go to �e� for next itera-
tion m+1

�f� until a prescribed criterion, i.e., equilibrium is reached.

Steps �iv� and �v� of �e� above allow the algorithm to escape
from local minima in an attempt to reach the global minimum.
When temperature is scheduled to cool down gradually to zero,
the combined scheme is known as simulated annealing. This
scheme requires significant computing time and is not necessary
for the morphological simulations performed here. As mentioned
earlier, the global minimum of the energy occurs when the mor-
phology exactly matches the original morphology �i.e., determin-
istic reconstruction�. Strict application of steps �a�-�f� with the full
range of correlation functions would lead to such a deterministic
reconstruction. For morphological simulation using the SRC
model, the objective is to find many qualified local minima as
desired configuration samples, and an absolute global minimum is
not needed. In this work, we use short-range-correlation functions
and a freezing temperature, resulting in a simple and fast algo-
rithm, which modifies the Step �e� above as follows:

�e� iteration step for mth configuration

�i� generate x�m� based on perturbation of x�m−1�

�ii� calculate the SRC energy U�x�m�� using Eqs. �3�, �7a�,
and �7b�

�iii� �U�m�=U�x�m��−U�x�m−1��
�iv� if �U�m��0, then go to �i� to try another x�m�; other-

wise, x�m� is accepted and go to �e� for next iteration
m+1

There are two important algorithmic issues remaining in Sub-
step �i�. The first issue is that of choosing from two possible
branches in the Metropolis algorithm, spin-flip or spin-exchange.
The spin-exchange approach, say in a two-phase medium, pro-
ceeds by exchanging two sites in different phases in each pertur-
bation, which always keeps a fixed volume fraction. Alternatively,
the spin-flip method flips the phase at a single site individually,
allowing the volume fraction to vary from perturbation to pertur-
bation. Spin-flip has been shown to be generally more efficient
than spin-exchange in texture analysis �41�. Also, in real material
samples, the first-order marginal distribution or histogram in Ref.
�6� is not deterministically constrained. Therefore spin-flip natu-
rally fits the SRC model. The second issue pertains to the proce-
dure to select spin-flip sites, i.e., random scanning, periodic scan-
ning, or raster scanning. In this study we choose random scanning
that was demonstrated to be most effective in Ref. �32�.

The most computationally demanding part of the algorithm de-
scribed in Refs. �11,12� is the calculation of the second- and third-
order correlations that are used to calculate the SRC energy �Sub-
step �ii�. Because of this, the most efficient updating schemes for
the second- and third-order SRC models are needed. The pair and
triple correlation functions can be computed for a morphological
configuration x, using the fast Fourier transform �42�

S2�r� = IFFT2��x̂����2� �11a�

S3�r1,r2� = IFFT3�x̂��1�x̂��2�x̂*��1 + �2�� �11b�

where superscript * denotes the conjugate complex, IFFT2 de-
notes the two-dimensional inverse fast Fourier transform, IFFT3
denotes the three-dimensional inverse fast Fourier transform, and
x̂��� is the fast Fourier transform of the sample x�r�

x̂��� = FFT2�x�r�� �11c�

Equation �11b� requires a significant amount of computing
memory, and direct calculation of the triple correlation function is
computationally feasible only for small window sizes. During
spin-flip iterations an alternative updating scheme for fast com-

puting of the SRC energy at Substep �ii� is available, an idea
which was also applied in Refs. �43,44�. When there is a spin-flip
at site x�m��r� in an image of resolution M1�M2, the covariance
function �normalized second-order correlation function� can be
updated as

C�m+1���� =
1

��m+1� − ��m + 1�2�C�m���� · ���m� − ��m�2
� + ��m�2

+
2xm�r� − 1

M1 · M2
· �x�m��r + �� + x�m��r − ���

− ��m + 1�2 ∀ � � 0 �12a�

C�m+1��0� =
1

��m+1� − ��m + 1�2�C�m��0� · ���m� − ��m�2
� + ��m�2

+
2xm�r� − 1

M1 · M2
− ��m + 1�2 �12b�

where � denotes volume fraction and � denotes the correlation
distance. Compared to the fast Fourier transform in Eqs.
�11a�–�11c� taking O�M1M2 log M1M2� multiplication operations,
the updating schemes �12a� and �12b� require only O��2L1+1�
��L2+1�� operations, where L1 and L2 are the dimensions of a
rectangular SRC window in the M1�M2 domain of the morphol-
ogy. For a 256�256 image with SRC window size L1=L2=10,
the ratio of computing efficiency can be as large as 18,157.

The updating scheme for the third-order correlation function is
given as follows:

S3
�m+1���1,�2� = S3

�m���1,�2� + �2xm�r� − 1� · �x�m��r + �1�x�m�

��r + �2� + x�m��r − �1�x�m��r − �1 + �2� + x�m�

��r − �2�x�m��r − �2 + �1�� ∀ �1 � 0 ∀ �2

� 0�1 � �2 �13a�

S3
�m+1���1,0� = S3

�m���1,0� + �2xm�r� − 1� · �x�m��r + �1� + x�m�

��r − �1�� ∀ �1 � 0 �13b�

S3
�m+1��0,�2� = S3

�m��0,�2� + �2xm�r� − 1� · �x�m��r + �2� + x�m�

��r − �2�� ∀ �2 � 0 �13c�

S3
�m+1���,�� = S3

�m���,�� + �2xm�r� − 1� · �x�m��r + �� + x�m�

��r − ��� ∀ � � 0 �13d�

S3
�m+1��0,0� = S3

�m��0,0� + �2x�m��r� − 1� �13e�
For each cycle of spin-flip throughout the whole domain of an
image, the third-order simulations �13a�–�13e� require
O�M1M2�2L1+1�2�L2+1�2� multiplication operations, �2L1+1�
��L2+1� times that required for the second-order model.

3 Numerical Simulation of Biphase Disordered
Materials

For biphase disordered materials, specifically, the information
of the nth-order correlation functions is equivalent to the nth-order
statistics �45�. The first two order statistics are therefore simply
the volume fraction � and the autocorrelation function S2. In this
study, we choose volume fraction � and the covariance function

C�l1,l2� =
S2�l1,l2� − �2

� − �2 �14�

as parameters for the second-order SRC metric function �follow-
ing Eqs. �6�, �7a�, and �7b��
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U2 = �1� + �2� �
l1=−L1

L1

�
l2=0

L2

�C̃�l1,l2� − C�l1,l2��2 �15�

Note in Eqs. �14� and �15� that l1 and l2 refer to coordinates, as
shown in Fig. 1. The size of the short-range window �2L1�2L2�
is a parameter that can be set in accordance with the target mor-
phology. The effect of this window size will be discussed for
specific examples later in this section. Results are complete using
only half a window �2L1�L2 in Eq. �15��, due to the center-
symmetry of covariance functions.

For the third-order SRC model, we simply let �1=�2=0 and
�3=1 in the simulation. Biphase processes represent a special case
where the third-order correlation function contains all information
about the first two orders of statistics. Therefore, there is no loss
of information in discarding the first two orders in the energy
expression. The energy U3 becomes

U3 =� �
l1=−L1

L1

�
l2=0

L2

�
l1�=−L1

L1

�
l2�=0

L2

�S̃3�l1,l2;l1�,l2�� − S3�l1,l2;l1�,l2���
2

�16�

We will see that formulation �16� produces improved simulation
quality over the energy norm U2 contained in Eq. �15�, as will be
demonstrated by the examples in Sec. 3.2.

Six morphological patterns from P1 to P6 �Fig. 2� indicated
with corresponding resolution are chosen as target configurations
for numerical simulation. In the simulation process, periodic
boundary conditions are prescribed. The criterion of iteration in
Step �f� for the second-order SRC model is to run until there is no
spin-flip allowed. For the computationally demanding third-order
model, the iteration stops when the energy curve becomes close to
flat, typically after five cycles of random scanning in our ex-
amples.

3.1 Effect of SRC Window Size. Pattern P2 shows a number
of identical circles randomly distributed in a matrix, which corre-
sponds to such random materials as fiber-reinforced composites.
The lattice M1�M2=128�128 and the radius of the circles is 4.
To study the effect of window size in the second-order SRC
model, we choose L1=L2=L �Eq. �15�� being 1, 5, 10, 15, 20, 30,
and 63, respectively. We set �1=0.7 and �2=1.0 for all the win-
dow sizes, in order to allow the volume fraction to deviate slightly
from sample to sample. Resulting samples are shown in Fig. 3,
which demonstrate that the volume fraction is close to the target
value except for the SRC window size L=63.

In Fig. 3 the best visual match �i.e., most circular shaped inclu-
sions� appears when the SRC window size L is 10, 15, or 20,
which is approximately two to three times the correlation length
of the target configuration �Fig. 4�. The interpretation is that too
small a window size contains insufficient morphological informa-
tion, while too large a window size beyond the correlation length

Fig. 1 Half window used in the calculation of energy „Eqs. „15…
and „16…… in SRC formulation

Fig. 2 Specific morphologies studied in this work

Fig. 3 The second-order SRC model for P2 with different SRC window
sizes „�1=0.7, �2=1.0…, with the respective volume fraction for each sample
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would include inaccurate information that pollutes the numerical
optimization. Figure 5 shows the results of a simulation based on
P5, which gives an even more striking representation of the win-
dow size effect. For the results in Fig. 5, it appears that none of
the samples from the second-order simulations are a very good
match. The window size of L=10 comes the closest in matching
the pattern. Similar to the results from P2, this is approximately
two times the correlation length of the original sample. These
results show that for both patterns, a window size of approxi-
mately two to three times the correlation length of the original
sample is needed to obtain good quality samples. The results from
Pattern P5 show that for some microstructures second-order sta-
tistics are insufficient to represent key microstructural features.
Therefore, extension to third-order statistics is addressed in the
next section.

3.2 Third-Order SRC Model. Figures 6 and 7 show sample
simulations based on Patterns P4 and P5, respectively, using the
third-order SRC model �Eq. �16��. There is a window size effect
similar to the second-order results in the third-order SRC model,
as shown in Figs. 6 and 7. In other words, window sizes close to
two to three times the correlation length of the original configu-

ration still remain the optimal selection. Generated samples of
P1–P6 are shown in Fig. 8 in order to provide a comparison be-
tween the second-order and the third-order results. The results
corresponding to P1 show that second-order statistics are suffi-
cient to represent the microstructural features. For the case of P2,
the structural feature of separate circles becomes clearer in the
third-order simulation. More obviously for the case of P3, the
circular shape and distinct sizes of the inclusions are effectively
reconstructed from the third-order simulation, where the second-
order simulation fails. For P4 and P5, the third-order samples
become much more improved and visually closer to the respective
targets. P6 shows improvement in the samples when using a third-
order rather than a second-order simulation; however, even the
third-order simulation is insufficient to reflect such quantities as
connectivity and percolation. In this simulation process, except for
P2 �128�128� where L=10, the window size for the other five
�256�256� is chosen as L=15.

As observable in Fig. 8, there is noise appearing in the third-
order simulation samples. A denoising procedure is therefore de-
veloped by simply placing a third-order simulated sample as an
initial configuration for a subsequent second-order simulation.

Fig. 4 Sample „target… covariance of P2: „left… profile; „right… contour

Fig. 5 Second-order simulation for P5 with different SRC window sizes
„�1=0.3, �2=1.0…

Fig. 6 Third-order simulation for P4 with different SRC window sizes

Fig. 7 Third-order simulation for P5 with different SRC window sizes
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The effectiveness of the procedure is illustrated with the denoised
samples shown in Fig. 8. To numerically interpret the procedure,
the normalized energies E2 and E3 for samples before and after
denoising are listed in Table 1, where E2 and E3 are defined by

E2 =

� �
l1=−K1

K1

�
l2=0

K2

�C̃�l1,l2� − C�l1,l2��2

� �
l1=−K1

K1

�
l2=0

K2

�C�l1,l2��2
�17�

E3 =

� �
l1=−K1

K1

�
l2=0

K2

�
l1�=−K1

K1

�
l2�=0

K2

�S̃3�l1,l2;l1�,l2�� − S3�l1,l2;l1�,l2���
2

� �
l1=−K1

K1

�
l2=0

K2

�
l1�=−K1

K1

�
l2�=0

K2

�S3�l1,l2;l1�,l2���
2

�18�

It is observed from Table 1 that the noise is mostly due to the
second-order energy E2, which can be obviated by minimizing E2

Fig. 8 Samples generated based on Patterns P1–P6, using the second-
order SRC model „�1=0.7, �2=1.0, �3=0…, the third-order SRC model „�1
=�2=0, �3=1.0…, and the denoised third order SRC model

Table 1 Denoising

P2 P4

Third-order
simulation ��15a�–�15e��

Denoised procedure
�3rd+2nd�

Third-order
simulation ��15a�–�15e��

Denoised procedure
�3rd+2nd�

E2 0.1071 0.0078 0.1553 0.0041
E3 0.0223 0.0555 0.0050 0.0195
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with the compromise of a slight increase in E3.
The above examples reaffirm that there is morphological infor-

mation that the second-order statistics miss and that can be re-
trieved from higher-order statistics.

The simulation process for P5 is graphed in terms of normal-
ized energy in Fig. 9 for the second- and third-order SRC models,
respectively, showing that the results converge rapidly. The com-
puting time of a Pentium 4 CPU for different sample sizes and
SRC window sizes is listed in Table 2. For a 256�256 image, the
second- and third-order simulations would typically take about
30 s and 2 h per cycle, respectively, for window size L1=L2=10.
The magnitude of the time ratio is consistent with our estimate of
operations in Sec. 3.1. Clearly, the third-order simulations come at
a computational cost that must be balanced with the microstruc-
tural features that must be retained in the simulations.

4 Classification of Morphologies Based on the SRC
Model

Many model-based techniques have been developed for pattern
recognition of morphologies in texture analysis and image pro-
cessing. This section is to initiate a generic method based on the
SRC model for classification of morphologies, following the ob-
servation of Ref. �43� that second-order statistics can represent
homogeneous textures such as P1, but have difficulty modeling
structured textures �e.g., P2–P6�. From the simulation examples
graphed in Fig. 8, it is conjectured that the degree of structural
complexity should be closely connected to a hierarchy order of
statistics, i.e., the more complex the structural features are, the
higher-order statistics that must be involved. For non-Gaussian
translation processes, the first two orders of statistics are complete
for representation �i.e., the process is completely defined by the
probability density function and the two-point correlation func-
tion�. As a result, non-Gaussian translation morphologies are not
successful at retaining highly structured features of the morphol-
ogy, such as shapes �22�. Morphologies that are predominantly
controlled by the second-order statistics, and could therefore be

appropriately described as translation morphologies, are referred
to as nonstructured morphologies. P1 is a sample of such a mor-
phology �Fig. 8�.

For those morphologies mostly controlled by second-order sta-
tistics but still having observable structural features, we categorize
them as lowly structured morphologies. One example is P2 in Fig.
8, where the second- and third-order simulation samples are simi-
larly acceptable. For the cases of P3–P5 in Fig. 8, the third-order
simulation samples are generally acceptable for visual similarity,
while second-order statistics are inadequate to capture important
morphological information. This class is referred to as medium
structured morphologies, and it is thought that most real-life mor-
phologies belong to this class. The class of highly structured mor-
phologies refers to those morphologies that require an order of
statistical modeling beyond third order. The example is P6 for
which the third-order model has difficulty capturing connectivity
and percolation �46�. Further statistical modeling efforts would be
an important direction, since percolation and connectivity have
wide applications in material and porous media fields, such as
stochastic fibrous networks, membrane, porous rocks, etc.

5 Conclusions and Discussion
In this study, a short-range-correlation model is proposed in the

framework of Markov and Gibbs random field theory to quantify
random morphologies in metric space. A robust simulation proce-
dure is established for morphologies of multiphase random media
by using the Metropolis spin-flip algorithm. Through development
of the SRC model, several issues of conceptual clarification are
emphasized below.

• Stochastic simulation versus deterministic reconstruction.
Stochastic simulation of random media using correlation
models should be based on windowed correlation functions,
i.e., focusing on spatially correlated information and assum-
ing long-range independence. Utilization of full-range cor-
relation functions would conceptually lead to deterministic
reconstruction of the original configuration.

• Statistical correlation functions versus sample (determinis-
tic) correlation functions. A uniqueness relationship exists
between an image and its deterministic correlation func-
tions. This issue is related to the first issue; in order to
simulate samples that are close in the SRC metric space, the
deterministic correlation functions describing the target con-
figuration should be free to vary at long range.

• nth-order statistics versus nth-order correlation function.
The latter is a subset of the former. Two-phase random me-
dia are a specific case where the two become equivalent.

• Spin-flip versus spin-exchange. The Metropolis spin-flip al-

(b)(a)

Fig. 9 Evolution of energy „error… in sample generation of P5: „a… second-order SRC model; „b… third-order SRC
model

Table 2 Computing time per cycle „Pentium 4 CPU 1400 MHz…

256�256 resolution 128�128 resolution

L=5 L=10 L=15 L=5 L=10 L=15

Second
order

26.0 s 29.6 s 35.2 s 6.9 s 7.4 s 8.7 s

Third
order

32 min 122 min 276 min 14 min 29 min 84 min
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gorithm greatly improves simulation efficiency by relaxing
the first-order statistics. In other words, the volume fraction
is not a rigidly fixed quantity, which might better reflect the
nature of variability observed from one material morphol-
ogy to the next.

From the simulation examples, we have the following observa-
tions.

• Morphological configurations close to each other in lower-
order metric space tend to be visually similar, and the degree
of similarity depends on the level of structural complexity in
a morphological pattern;

• Second-order statistics give a global pattern, and are suffi-
cient for unstructured and perhaps lowly structured mor-
phologies �e.g., P1 and P2�, but miss local structural features
of structured morphologies that are important for many
physical properties.

• Third-order statistics retrieve most local structural features
and provide visual similarity for a large class of morpho-
logical patterns �e.g., P3–P5�.

• For highly structured morphologies �e.g., P6�, higher-order
correlations than the third-order correlation function become
necessary to capture connectivity and percolation properties.

• An interesting finding is that the SRC model can effectively
simulate nonuniform patterns of inclusions such as P4 that
has circles with two different diameters.

Based on the observations, we make the following conjectures
concerning those intriguing morphological questions posed in
various research fields �e.g., 1�:

1. Are there configurations close in nth-order statistics but dif-
ferent in �n+1�th-order statistics? Yes, if generated in the
context of windowed spatial statistics. One obvious example
is the case of P3 in Fig. 8. The sample simulated with the
second-order SRC model closely matches the target second-
order statistics �Eq. �17��, but obviously it has failed to cap-
ture much of the third-�Eq. �18�� and higher-order statistics.

2. Is morphology completely modeled by a hierarchical order
of statistics? Yes, the well-known statement is confirmed by
the numerical analysis performed in this study; i.e., morpho-
logical information can be translated into a hierarchical or-
der of statistics. The higher order of statistics that are
known, the more detailed are the morphological features that
are retrievable.

3. Which is the lowest order of statistics for engineering inter-
ests? Visual inspection of the results suggests that the third-
order SRC model might be sufficient for many random me-
dia engineering problems �such as effective properties�,
except for those of percolation models. Future numerical
evaluation of physical properties based on samples simu-
lated by using the third-order SRC model is expected to
verify this conjecture.

4. What morphologies have the same lower-order statistics but
widely different effective properties? Lower-order statistics
are insufficient to model highly structured morphologies that
have small volume fractions and percolation properties. The
example is P6 where the third-order simulation sample still
lacks the appropriate connectivity properties.

As research interests of random media focus on physical prop-
erties, future work in the SRC modeling would continue in this
direction by covering the following topics.

• Find a method to determining the optimal SRC window size
for different types of morphologies and more detailed work
of numerical analysis and relevant convergence study is ex-
pected on the topics of window sizes and correlation order.

• Optimize the third-order energy formulation of Eq. �16� in
dealing with different classes of morphologies.

• Exploit applicability of the SRC model on highly structured
morphologies such as stochastic fibrous networks.

• Investigate the relationship between resolution and simula-
tion quality, and conduct multiresolution simulation to re-
duce computing time.

• Investigate the relationship among visual, morphological,
and physical properties by numerically evaluating morpho-
logical features and physical properties of samples gener-
ated by the SRC model.

• Evaluate third-order bounds of effective properties by using
the third-order SRC model for various morphologies classi-
fied in Sec. 4. Relevant work includes those on level-cut
Gaussian random fields �18,47,48�.

• Conduct a computationally demanding third-order three-
dimensional simulation and develop a parallel computing
algorithm.

• Conduct real materials statistical measurement and testing
�49,50�.

We also note that third- and higher-order statistical simulations
of stochastic processes are an important direction. Simulation of
non-Gaussian processes is generally limited to first two orders of
statistics �51–56�. It is expected that the SRC model introduced in
this study can be extended to simulation of general stochastic
processes.
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Constructing Multilayer
Feedforward Neural Networks to
Approximate Nonlinear Functions
in Engineering Mechanics
Applications
This paper presents a major step in the development and validation of a systematic
prototype-based methodology for designing multilayer feedforward neural networks to
model nonlinearities common in engineering mechanics. The applications of this work
include (but are not limited to) system identification of nonlinear dynamic systems and
neural-network-based damage detection. In this and previous studies (Pei, J. S., 2001,
“Parametric and Nonparametric Identification of Nonlinear Systems,” Ph.D. thesis, Co-
lumbia University; Pei, J. S., and Smyth, A. W., 2006, “A New Approach to Design
Multilayer Feedforward Neural Network Architecture in Modeling Nonlinear Restoring
Forces. Part I: Formulation,” J. Eng. Mech., 132(12), pp. 1290–1300; Pei, J. S., and
Smyth, A. W., 2006, “A New Approach to Design Multilayer Feedforward Neural Net-
work Architecture in Modeling Nonlinear Restoring Forces. Part II: Applications,” J.
Eng. Mech., 132(12), pp. 1301–1312; Pei, J. S., Wright, J. P., and Smyth, A. W., 2005,
“Mapping Polynomial Fitting Into Feedforward Neural Networks for Modeling Nonlin-
ear Dynamic Systems and Beyond,” Comput. Methods Appl. Mech. Eng., 194(42–44), pp.
4481–4505), the authors do not presume to provide a universal method to approximate
any arbitrary function. Rather the focus is given to the development of a procedure which
will consistently lead to successful approximations of nonlinear functions within the
specified field. This is done by examining the dominant features of the function to be
approximated and exploiting the strength of the sigmoidal basis function. As a result, a
greater efficiency and understanding of both neural network architecture (e.g., the num-
ber of hidden nodes) as well as weight and bias values is achieved. Through the use of
illuminating mathematical insights and a large number of training examples, this study
demonstrates the simplicity, power, and versatility of the proposed prototype-based ini-
tialization methodology. A clear procedure for initializing neural networks to model
various nonlinear functions commonly seen in engineering mechanics is provided. The
proposed methodology is compared with the widely used Nguyen–Widrow initialization to
demonstrate its robustness and efficiency in the specified applications. Future work is
also identified. �DOI: 10.1115/1.2957600�

1 Introduction

1.1 Motivation. The initialization of neural networks is the
foremost step in training them to approximate functions. This
critical step affects both the speed and precision of training con-
vergence, as evidenced in previous studies �e.g., Ref. �1��. This
challenge of initialization exists for both static and dynamic neu-
ral networks �2�. The universal approximator theorem �3,4� has
proven the feasibility of function approximation but has not of-
fered a constructive solution for neural network initialization.
Other noteworthy existing efforts include methods built on a good
understanding of the capabilities of sigmoidal functions �5–9�,
methods utilizing the features of the function to be approximated
�1,8�, constructive methods �5,10,11�, and many more �e.g., those
summarized in Refs. �12,13�. Reference �14� also provides a sum-
mary of existing initialization approaches that have inspired this
study or are closely related to it.

Despite these previous efforts, it is the opinion of the neural

network community that both analytic and heuristic approaches
are still in need of ideas to guide practical applications of function
approximation. With no exceptions, this is also the case in the use
of neural networks in engineering mechanics to simulate and iden-
tify nonlinear functions, especially in the applications of structural
health monitoring and damage detection �15,16�. According to
previous studies �1,12�, such a fundamental problem might be
hard to overcome in a general sense and thus may only be ad-
dressed properly by looking into the features of the function to be
approximated or, equivalently, the features of the error function
surface. This philosophy lends itself to a direction of seeking ef-
fective domain-specific solutions for neural network initialization.
Therefore, this study as well as the previous studies that it is built
upon �15–18� do not aim for an initialization solution to any ar-
bitrary nonlinear function. Rather the effort here is to rationally
connect the understanding of the capabilities of sigmoidal func-
tions and the domain knowledge of the function to be approxi-
mated to the inner workings of neural networks.

Throughout this study, the following expressions are adopted
for multilayer feedforward neural networks with a logistic sigmoi-
dal activation function S, as shown in Eq. �1� below. Furthermore,
any given continuous scalar goal/target function g�x� of vector x
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can be approximated by another scalar output function y�x� using
a linear summation �3,4� of sigmoidal functions as follows:

y�x� = �
j=1

nh

w2,jS�w1,jx + bj� = �
j=1

nh
w2,j

1 + e−�w1,jx+bj�
�1�

where j=1, . . . ,nh, and nh is the number of hidden nodes. Note
that w1,j corresponds to input layer weights, bj to biases, and w2,j
to layer weights �IW, b, and LW, respectively in the MATLAB Neu-
ral Network Toolbox �19��. Neural network initialization needs to
address the following issues: �i� number of hidden layers, �ii�
number of hidden nodes in each layer, i.e., the values of nh ap-
pearing in Eq. �1�, and �iii� values of the weights and biases, i.e.,
the values of IW, b, and LW.

1.2 Objectives and Scope. The ultimate goal of the authors is
to develop a set of detailed guidelines with theoretical justifica-
tions for using data-driven techniques such as neural networks in
engineering applications based on �i� the mathematical and physi-
cal insights of the problem to be modeled and �ii� the capabilities
of neural networks in terms of a clear formulation of a linear sum
of sigmoidal functions. The benefits of such an effort are many
and include a more constructive approach for neural network ini-
tialization, more guaranteed training performance, and trained re-
sults with more meaningful interpretations than those obtained
otherwise.

This study aims at substantiating the existing ideas and proce-
dures proposed in a series of previous studies �15–18,20�, with
specific focus on applying neural networks to function approxima-
tion within engineering mechanics. The objectives are as follows:
�i� to construct an explicit road map describing the proposed
prototyped-based neural network initialization methodology; �ii�
to develop a set of prototypes which can be used to approximate
ten typical types of nonlinear functions commonly seen in engi-
neering mechanics applications; �iii� to identify the interrelation-
ships of these prototypes in order to streamline the proposed
prototype-based methodology; �iv� to provide training examples
to validate the training convergence and speed of the proposed
initialization methodology, thus demonstrating its usefulness and
power; �v� to analyze the similarities and differences between the
proposed initialization methodology and the widely adopted
Nguyen–Widrow initialization algorithm �6�; and �vi� to provide
practical guidance on the remaining subjective design issues and
shed light on the process of expanding this static neural network
initialization methodology for dynamic neural networks.

Although not entirely arbitrary, the functions to be approxi-
mated in this study are not limited to nonlinear restoring forces, as
previously done �15–18�. Here, the focus is given to approximat-
ing basic nonlinear functions that are widely encountered in engi-
neering mechanics applications such as those seen in the stress-
strain, moment-curvature, and load-displacement relationships, as
well as time histories.

On one hand, this study is focused on memoryless and mono-
tonic functions. Nonlinearities with memory are not treated in this
study since they require different types of neural networks �e.g.,
recurrent neural networks, or multilayer feedforward neural net-
works with high dimensional inputs �2,21��. This study will lay a
solid foundation for these other types of neural networks to build
upon. On the other hand, monotonic nonlinearities are also the
focus of this study. Several existing studies �8,10� have been car-
ried out to analyze strategies for time-history-like nonlinearities
with obvious peaks and valleys. However there is a gap in the
literature on how to approximate ubiquitous monotonic nonlin-
earities using multilayer feedforward neural networks.

2 Proposed Initialization Methodology

2.1 Overview of the Proposed Three-Stage Initialization
Methodology. The central drive of this domain-specific neural
network initialization methodology is to transform an otherwise

ambiguous and thus largely trial-and-error-based procedure into a
clearly defined near-deterministic procedure that can be easily un-
derstood and executed. Before training takes place, this study pro-
poses that three cohesive initialization stages—including Stage I
�selecting prototypes�, Stage II �selecting variants�, and Stage III
�deciding transformation�, as outlined in Fig. 1—be implemented.
This is recommended for a typical initialization procedure using a
feedforward neural network with one hidden layer to approximate
a nonlinear function.

The proposed initialization methodology for designing a
multilayer feedforward neural network begins with selecting a
proper prototype according to the main features of the function to
be approximated. This is Stage I. In Stage II, some of the initial
values of the weights and biases and their interrelationships can be
further determined by considering various variants within the se-
lected prototype. If non-normalized, the range of the input and
output is further considered in Stage III by scaling and shifting the
selected variant to complete initialization before batch mode train-
ing takes place.

In the flowchart shown in Fig. 1, both the accomplished work in
this study and the tasks planned for future studies are presented.
Multiple options for initialization exist throughout Stages I, II,
and III, reflecting the highly adaptive nature of multilayer feed-
forward neural networks. However each decision can be made
through a rational procedure, as presented in this study. In prin-
ciple, all the options could be extensively examined to determine
the best initialization strategy as depicted in the iterations of the
three stages. It can be seen that these three cohesive stages explic-
itly address all aforementioned questions on initialization as men-
tioned in Sec. 1.1:

�i� Number of hidden layers: One hidden layer is recom-
mended. This is based on the universal approximator theo-
rem �3,4�. In certain situations, multiple hidden layers may
be a better option than one hidden layer. The initialization
methodology presented here can be generalized to work in
the situations envisioned in Ref. �17�.

�ii� Number of hidden nodes in each layer: Generally, a small
number of hidden nodes is recommended, which is de-
rived either through mathematical proofs/reasoning or nu-
merical exercises of linear sums of sigmoidal functions.
This is the outcome of Stage I.

�iii� Values of the weights and biases: Some predetermined
weight and bias values are recommended to minimize or
avoid using any randomization, such as that employed in
the Nguyen–Widrow initialization �6�. Again, these values
are determined through a progressive and iterative proce-
dure consisting of Stages I–III.

2.2 Understanding Prototypes and Their Variants. The key
elements in this proposed methodology, prototypes and their vari-
ants, are predetermined neural networks that are not obtained
from an inverse formulation of training any data sets. Instead, they
are constructed in advance from a forward formulation based on
either the algebraic or geometric capabilities of linear sums of
sigmoidal functions to capture some dominating features of the
nonlinear function to be approximated in the specified applica-
tions. Preparing prototypes and variants takes time, but can be
done in a forward problem fashion by following a clear procedure.
The resulting prototypes and variants are generic; i.e., they can be
used for numerous individual training tasks through proper trans-
formations �as in Stage III�, thus leading to a high overall effi-
ciency in addition to the built-in rationality and transparency in
this proposed initialization methodology.

A qualitative justification for applying a prototype-based ap-
proach for greater success in neural network training can be found
in the balance between global and local search involved in train-
ing. Ideally, training neural networks in function approximation
should belong to the “global search” category by finding global
minima of error functions. However, currently employed training
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techniques are normally only “local search” tools �21�. Thus se-
lecting a good initial point for neural network training is critical
since the training process will normally result in trained values
that are still in the neighborhood of their initial values. If domain
knowledge or any other insight of the function to be approximated
could be used to influence neural network initialization, then the
training would more likely converge to the global minimum �in-
stead of just a local minimum�, making the trained neural network
more accurate and meaningful. This is the guiding philosophy of
the neural network initialization methodology proposed in this
paper and in previous works related to it �15–18�.

To validate and fully develop the proposed neural network ini-

tialization methodology, ten types of nonlinear functions appear-
ing in Refs. �22,23� and presented in Fig. 2 are selected as target
functions. These nonlinearities represent typical functions encoun-
tered in the applications of aerospace, mechanical, and structural
engineering.

In this study, specific prototypes for training these nonlineari-
ties are constructed. For the ten types of nonlinear functions speci-
fied in Fig. 2, it is recommended that only three prototypes be
utilized either individually or combinatorially for neural network
initialization. This finding reveals the versatility and efficiency of
the proposed initialization. In other words, it does not always
seem necessary to develop a brand new prototype for each non-

Examine data to determine dominating features

Start

Decide number of hidden nodes

Select prototype that best corrosponds to these featuresStage I

Select a variant of the prototypeStage II

Adjust transformtion?

Adjust prototype?

Adjust variant?

End

Yes

Yes

Yes

No

No

No

Determine features automatically

Select prototype automatically

Explore additional prototypes

Train using other initialization strategies

Test with streaming mode training and dynamic neural networks

Add nodes to increase accuracy

Add nodes to increase accuracy

Stage III Decide proportioning and
translation if necessary

Step 1:

Decide scaling if necessary
Step 2:

Select variant automatically

Decide transformation automatically

Train using Nguyen-Widrow

This Study

Add nodes to increase accuracy

Future Work

Batch mode training

Prototype #2 Prototype #3 Prototype #1b + #1cPrototype #1 Prototype #1b #2+- . . .

Fig. 1 Flowchart to illustrate the proposed prototype-based initialization and growing training technique

I. Linear
II. Cubic
stiffness

and more

III. Bilinear
stiffness

and more

IV. Multi-
slope

V. Frac-
tional
power

VI. Soften-
ing cubic
and more

VII. Clear-
ance (dead

space

VIII. Hard
saturation

IX. Satu-
ration

X. Stiction

Prototype #1 Prototype #2 Prototype #3 Prototype #1b + #1c Prototype #1b #2+-

Fig. 2 Ten types of nonlinear functions commonly seen in engineering mechanics ap-
plications and the recommended multilayer feedforward neural network architectures
„i.e., prototypes… used to train them. Note that the indicated relationships are not
exhaustive.
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linearity since a prototype constructed for one nonlinearity might
also work successfully in approximating another. This attractive
feature is evidenced in this study �i� through a graphical “decom-
position” of a complex nonlinearity into a combination of several
simpler nonlinearities whose prototypes have already been identi-
fied and �ii� through numerous training examples. Further theoret-
ical and numerical work is underway to reveal the inner workings
of neural networks to more thoroughly verify, understand, and
utilize this attractive feature of the proposed initialization �24�.

2.3 Construction of Prototypes and Their Variants. For the
three prototypes proposed in this study, a constructive step-by-
step procedure is illustrated in Fig. 3. Bear in mind the following:
�i� In constructing prototypes, one needs not strive for an exact
approximation of any target function. Rather, one focuses on
mimicking dominating features of nonlinearities while leaving
fine tuning of the approximation to the training process of neural
networks. �ii� The weights IW and biases b form the basis func-
tions, and the weights LW correspond to the coefficients, as exer-
cised in the previous works �15–18�. �iii� The input and output
ranges in these three prototypes are normalized; handling non-
normalized input and output will be elaborated further in Sec. 2.5.

The basic characteristics of nonlinearities, including softening,
hardening, and oscillatory features, are sought in the construction
of these three prototypes. Referring to Eq. �1�, for each individual
term �i.e., each hidden node� used, the built-in nonlinear features
of the sigmoidal function are utilized to reproduce these charac-
teristics by �i� adjusting the weight IW to “zoom” into or out of
the sigmoidal function and �ii� changing the bias b to “slide” the
sigmoidal function to select the right input range. These consider-
ations are the driving force behind the determination of the values
of the weight IW and bias b in an individual term/hidden node.

It can be seen that only three, four, and two terms/hidden nodes
are utilized in the construction of Prototypes 1, 2, and 3, respec-
tively. It can also be seen intuitively that these prototypes are
essentially one sigmoidal term with a constant level of 0.5 re-
moved, a summation of two symmetrical sigmoidal terms with a

constant level of 1.0 removed, and a subtraction of two similar
sigmoidal terms that share the same center.

Note that in each prototype there are �i� fixed values of weights
and/or biases, �ii� weights and biases in one sigmoidal term/
hidden node with a fixed relationship to those in other sigmoidal
terms/hidden nodes �e.g., pairs of similar sigmoidal terms are of-
ten utilized to produce symmetrical features, which leads to cer-
tain constraints between the selected values for the weights IW’s
and LW’s and/or the biases b’s in different terms/hidden nodes�,
and �iii� some weights and biases with truly free values. It has
been seen that combinations with very simple integer coefficients
�such as �1 and �0.5� of just a few terms/hidden nodes are
sufficient to form the nonlinear characteristics. The simplicity of
producing linear sums of sigmoidal functions means that the con-
struction of prototypes involves no tedious calculations. In prin-
ciple, these simple integer values for the weights LW can be made
free and should be fully exploited. However it has been decided in
this study to leave this flexibility neither to the prototypes nor to
their variants �to be discussed below�. Rather it is entirely as-
signed to the proposed Stage III to allow for the largely fixed
prototypes to adapt to various options.

Because of the flexibility of some of the weights and/or biases,
there exists a theoretically infinite number of variants, which can
be obtained by altering these values. The right side of Fig. 3
illustrates three possible variants for each proposed prototype for
a normalized input. The values of the weights and biases used
here can be found in Table 1. It can be seen that a single prototype
can yield several variants with distinctive nonlinear characteristics
through the adjustment of the flexible weights and biases. Thus
selecting proper variants is critical and could be subjective. Once
again, the authors do not use a random option when faced with
such a challenge. Rather, a systematic procedure is proposed in
Stage III to limit subjective decisions and make trial-and-error
procedures as rational as possible.

2.4 Decomposition of More Complex Target Functions.
The decomposition of a complex target function refers to the pro-
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Fig. 3 A step-by-step procedure to illustrate the construction of the proposed „a… Prototype 1, variant a, „b… Prototype 2,
variant a, and „c… Prototype 3, variant a. Three variants from each prototype are shown to the right of the procedure.
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cedure which converts the function into a summation of simpler
functions that are conveniently related to the proposed prototypes
and their variants. This procedure is required in �i� the selection of
both prototypes and variants and �ii� the stage of transformation
dealing with complex target functions. It is also envisioned that
this technique will be necessary for the expansion of this work
beyond the ten types of nonlinearities studied here.

The forward problem of the construction and exploration of the
prototypes and their variants can be challenging. Furthermore,
matching a target function with prototypes and selecting a proper
variant are inverse problems and can thus be equally challenging,
if not more so. An intuitive approach could be to develop every
prototype or even a full spectrum of variants that could closely
match any typical nonlinearity in engineering mechanics applica-
tions on a one-to-one basis. However, this approach would likely
be neither feasible nor necessary. The number of types of nonlin-
earities can be enormous or even infinite in practice. Thus it might
not be realistic to consider all of them when developing this
prototype-based neural network initialization methodology. The
adaptivity of neural networks, especially in the form of a universal
approximator, should not be overlooked; it would be highly pos-
sible for a limited number of prototypes to suit a great number of
nonlinearities. Section 4.1 further verifies the power of the adap-
tivity of neural networks paired with the proposed initialization
methodology.

Even though the adaptivity of neural networks is fully utilized
in the training process, this study focuses on a design of the ini-
tialization following a foolproof procedure. Here a key technique
is offered to relate a limited number of prototypes to a large num-

ber of types of nonlinearities. This is done by seeking a means of
utilizing the proposed prototypes as templates or basic building
blocks in the initialization; accordingly, a target function with
complex nonlinearities can be visualized as a linear sum of simple
nonlinearities whose prototypes have already been constructed.
Just like the construction of prototypes, this decomposition does
not need to be exact. Delicate features are left to the adaptivity of
the neural network during training.

Figure 4 illustrates the idea of decomposition. In Fig. 4�a�, a
wave form is spatially partitioned into several individual cycles,
each of which can be approximated independently using Prototype
3 after some detailed treatment under Stage III transformation.
The training results are presented in Refs. �25,26�. In Fig. 4�b�, the
summation of a straight line and a clearance �dead space� type
nonlinearity over the same input range is exercised to produce a
multislope nonlinearity. The training result is presented in Fig. 5.
Using subtraction instead of summation, the saturation nonlinear-
ity can be decomposed into the same two types of nonlinearities.

A good understanding of sigmoidal functions is necessary in the
proposed decomposition. One unique advantage of Prototype 3 is
that it offers a convenient local basis function since its neighbor-
ing areas are all zero. In contrast, Prototypes 1 and 2 have nonlo-
cal basis functions since their neighboring areas are nonzero and
can be highly nonlinear, as shown in Figs. 3�a� and 3�b�. These
features should be taken into account when decomposing complex
target functions.

Table 1 Values of weights and biases used in Prototypes 1, 2, and 3. Note that in this table,
normalized inputs and outputs are used. The quantities with � are fixed. The quantities with †

are associated with the constant term †15,18‡ and are not scaled throughout this study. Also
note the interrelationships between various IW, b, and LW values.

Prototype
and variant

Weights in input layer,
IW

Biases in input layer,
b

Weights in output layer,
LW

1a �5 1†−1†�T �0� 0� 0��T �1 −0.5 −0.5�
1b �1 1†−1†�T �0� 0� 0��T �1 −0.5 −0.5�
1c �20 1†−1†�T �0� 0� 0��T �1 −0.5 −0.5�
2a �5 5 1†−1†�T �5 −5 0� 0��T �1 1 −1 −1�
2b �5 5 1†−1†�T �10 −10 0� 0��T �1 1 −1 −1�
2c �10 10 1†−1†�T �5 −5 0� 0��T �1 1 −1 −1�
3a �10 5�T �0 0�T �1 −1�
3b �5 1�T �0 0�T �1 −1�
3c �20 10�T �0 0�T �1 −1�

1b+1c �1 20 1†−1†�T �0� 0� 0� 0��T �1 1 −1 −1�
1b+2a �1 5 5 1†−1†�T �0� 5 −5 0� 0��T �1 1 1 −1.5 −1.5�
1b−2a �1 5 5 1†−1†�T �0� 5 −5 0� 0��T �1 −1 −1 0.5 0.5�
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Fig. 4 Decomposing „a… swept sine and „b… multislope into a summation of some com-
ponents that can be approximated directly using the proposed prototypes
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2.5 Transformation: Dealing With Non-Normalized Input
and Output. The concept of prototypes and their variants is ge-
neric and thus should not be restricted to normalized input and
output ranges. In principle, one could determine the values of IW,
b, and LW based on arbitrary input and output ranges. This flex-
ibility, however, could cause confusion and inconsistency, and
needs to be handled with care for the sake of clarity in implement-
ing the proposed methodology.

Having said this, it is adopted in this study to �i� define proto-
types and their variants entirely based on normalized input �x� and
output �y�x�� ranges and �ii� utilize a separate stage, Stage III, to
further transform a selected prototype or its variant for a non-
normalized input-output situation. Three scenarios involving non-
normalized ranges can arise, and the corresponding strategies uti-
lizing the derived prototypes and their variants for normalized
ranges are given as follows:

�i� Non-normalized input, x̄=Cxx: One can proportion the de-
rived prototypes and their variants by “stretching” or
“squeezing” the function approximated by the initial neu-
ral network along the x-direction in inverse relation to the
non-normalized input. Quantitatively, the transformed
value of IW, w̄, is based on wx+b= w̄x̄+b, where w̄
= �1 /Cx�w.

�ii� Offset of the target function along the input, x̄̄=x+x0, or
along the output, ȳ=y+y0: To handle the offset, one can
translate the derived prototypes and their variants by shift-
ing the entire function to its new center while preserving
its shape. When the input alone is offset, the transformed

value of the basis, b̄, is based on wx+b=wx̄̄+ b̄, where b̄
=b−wx0. When the output is offset, one can utilize the two
terms that are designated to approximate a constant �18�.

�iii� Non-normalized output, ȳ̄ =Cyy: It is proposed that the LW
values of the prototypes and their variants be scaled ac-
cording to the non-normalized range of the output.

Since the values of IW and b determine the basis function in
function approximation, the related transformations are referred to
as Step 1. Similarly, the values of LW affect the coefficients, and
their related transformations are referred to as Step 2. It is recom-
mended that Steps 1 and 2 be carried out in this sequence. Both
shorthand notations have been indicated in Fig. 1 and will be
further utilized in the following training examples for clarity. In
addition, the following notation will be used to denote a typical
neural network generated from the proposed initialization meth-
odology after the full procedure �including transformations� has
been applied to the prototypes and their variants as introduced
above:

Initial neural network ID: Cy � n�x0�
�Cx�

+ y0

where n denotes the prototype number and variant ID.

2.6 Comparison Between Proposed and Nguyen–Widrow
Initialization. In addition to the comparisons throughout the
training examples presented later, a couple of highlights are pro-
vided here to compare the proposed initialization with the
Nguyen–Widrow initialization algorithm �6� as well as with some
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Fig. 5 An example of combining Prototypes 1 and 2 to train a multislope function. The
idea of decomposition is presented in Fig. 4„b…. The target function is in gray, while those
black curves with different line thicknesses show four random options using the
Nguyen–Widrow initialization †6‡. Note that both Steps 1 and 2 were used to generate
possible options for the initialization.
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previous work reviewed above in Sec. 1. Bear in mind that the
proposed initialization is not aimed at approximating arbitrary
functions. Rather it is a domain-specific application.

First of all, unlike the Nguyen–Widrow algorithm, the proposed
initialization is constructive, i.e., it answers how many hidden
nodes are needed. Similar to the Nguyen–Widrow algorithm, the
proposed initialization �i� emphasizes understanding the function
to be approximated �although the implementation is achieved in a
different manner�, �ii� utilizes the strength of sigmoidal functions
�although the focus of these two approaches are different�, and
�iii� could still be subjective and involve some trial and error.
Further details can be seen in Ref. �25�.

3 Training Examples
All ten types of nonlinearities were successfully trained using

the proposed methodology. While typical examples of directly
adopting the proposed prototypes can be found in Refs. �25–27�,
the way to utilize the proposed decomposition technique is the
focus of this section �see Table 2 for all values of the weights and
biases�. All trainings were carried out using the MATLAB Neural
Network Toolbox �19� with the batch training mode and the
Levenberg–Marquardt backpropagation algorithm �28�. Since the
Nguyen–Widrow initialization algorithm does not specify the re-
quired number of hidden nodes, this critical piece of information
is borrowed from the proposed initialization methodology when-
ever the Nguyen–Widrow initialization is used.

3.1 Approximating One-Variable Functions by Combining
Prototypes. The decomposition approach presented in Sec. 2.4
can be applied to numerous types of nonlinearities that are more
complex than those nonlinear functions that can be approximated
directly by individual prototypes. As shown in Fig. 4�a�, a swept
sine can be approximated by applying Prototype 3 three times,
yielding a neural network with six hidden nodes. In particular, the
center of each cycle needs to be captured in the initialization
through translation �i.e., adjusting the value of the bias, b�, while

the non-normalized input range needs to be taken into account
through proportioning �i.e., scaling the value of the weights, IW�.
One feasible neural network initialization for a swept sine curve
can be written: −1�3a�4�

�2�−1�3a�7�
�1.25�−1�3a�9�

�1�. The results of a

similar training can be found in Refs. �25,26�.
One more example is shown in Fig. 5 for the multislope non-

linearity �type IV in Fig. 2� following the decomposition idea
shown in Fig. 4�b�. The option of 40�1b�10�+20�2a�10� seems to
give the best performance when the epoch number is small, while
that of 2�1b�10�+2a�10� tends to perform best in the long run.
Note that multiple options exist for the training. The presented
training results are not exhaustive; one can utilize the proposed
Stage III to further generate and refine other options. The satura-
tion and stiction nonlinearities �types IX and X in Fig. 2, respec-
tively� have also been trained successfully as a further validation
of the proposed decomposition approach. Additionally, the frac-
tional power nonlinearity �type V in Fig. 2� can also be trained
using a decomposition approach as presented in Ref. �26�.

For the commonly seen functions in engineering mechanics
presented thus far, the proposed initialization seems to be effi-
cient. From these training examples, it can be seen that the pro-
posed initialization starts with a neural network output that always
mimics the target function to a certain extent and consequently
leads to a successful training. In contrast, the Nguyen–Widrow
initialization starts with a random realization that does not bear
any similarity to the target function, and the corresponding train-
ing can have unpredictable success. As for convergence speed �as
shown by the mean square error �MSE� versus epoch� in success-
ful training cases, the proposed initialization is at least equivalent
to that of Nguyen-Widrow’s, if not faster. More predictable train-
ing success and faster convergence speed are the advantages of
the proposed initialization, as well as �i� full knowledge of the
required number of hidden nodes and �ii� a clear procedure at
every stage of the initialization.

Table 2 Initial values of the weights and biases used in Figs. 5, 6, 8, and 10. Note that in this
table, normalized inputs and outputs are used. The quantities with � are fixed. The quantities
with † are associated with the constant term †15,18‡ and are not scaled throughout this study.
Also note the interrelationships between various IW, b, and LW values.

Prototype and variant Weights in input layer, IW Biases in input layer, b Weights in output layer, LW

Fig. 5 �multislope nonlinearity�

1b�10�+2a�10� �0.1 0.5 0.5 1† −1†�T �0� 5 −5 0� 0��T �1 1 1 −1.5 −1.5�
1b�10�+2b�10� �0.1 0.5 0.5 1† −1†�T �0� 10 −10 0� 0��T �1 1 1 −1.5 −1.5�
1b�10�+2c�10� �0.1 1.0 1.0 1† −1†�T �0� 5 −5 0� 0��T �1 1 −1.5 −1.5�

2�1b�10�+2a�10� �0.1 0.5 0.5 1† −1†�T �0� 5 −5 0� 0��T �2 1 1 −2 −2�
40�1b�10�+20�2a�10� �0.1 0.5 0.5 1† −1†�T �0� 5 −5 0� 0��T �40 20 20 −40 −40�

Fig. 6 �two-variable softening Duffing nonlinearity�

5�3a�10�+1a�50� �1.0 0.5 0 0 0

0 0 0.1 1† −1† �T

�0 0 0� 0� 0��T �5 −5 1 −0.5 −0.5�

4�3b�10�+1a�50� �0.5 0.1 0 0 0

0 0 0.1 1† −1† �T

�0 0 0� 0� 0��T �4 −4 1 −0.5 −0.5�

Fig. 8 �piecewise nonlinearity typical of concrete in compression�

100�2a�10� �0.5 0.5 1† −1†�T �5 −5 0� 0��T �100 100 −100 −100�
100�2a�10�

�10� �0.5 0.5 1† −1†�T �0 −10 0� 0��T �100 100 −100 −100�

100�2a�10�
�10�+100 �0.5 0.5 1† −1†�T �0 −10 0� 0��T �100 100 0 0�

Fig. 10 �scaled output cubic nonlinearities�

1�2a �5 5 1† −1†�T �5 −5 0� 0��T �1 1 −1 −1�
10�2a �5 5 1† −1†�T �5 −5 0� 0��T �10 10 −10 −10�

100�2a �5 5 1† −1†�T �5 −5 0� 0��T �100 100 −100 −100�
1000�2a �5 5 1† −1†�T �5 −5 0� 0��T �1000 1000 −1000 −1000�
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3.2 Approximating Two-Variable Functions by Combining
Prototypes. Approximating a function of two �or more� variables
is of great importance in engineering mechanics applications. For
example, nonlinear hysteretic restoring force can be formulated as
both displacement and velocity in a single-degree-of-freedom
�SDOF� system, which is known as the force-state mapping for-
mulation �29�. References �15–18� outline some of the strategies
to map the force-state formulation into a feedforward neural net-
work with one hidden layer. When the memory effect of nonlinear
dynamics is considered, three state variables are needed in the
formulation. When the degradation is further considered, four
state variables are needed. All these point to the need of approxi-
mating functions with multiple variables.

To approximate a function of two variables, certain situations
can be conveniently handled according to the proposed initializa-
tion for one-variable functions, as presented in Refs. �15–18�. The
idea of decomposition is very useful in generalizing the solution
from one-variable to two-variable functions, especially when deal-
ing with two uncoupled variables. For example, a softening
Duffing oscillator from Ref. �30� is described as g�x , ẋ�=x
+0.0159ẋ−0.01x3, where x and ẋ stand for displacement and ve-
locity, respectively �i.e., the state variables�. For x, Prototype 3 is
utilized to capture the softening cubic nonlinearity �type VI in Fig.
2�, while for ẋ, Prototype 1 is adopted to approximate either a
linear viscous or a Coulomb damping term. Figure 6 presents the
training results using both the Nguyen–Widrow and the proposed
initialization, each with two options. It can be seen that the pro-

posed initialization is more successful than the Nguyen–Widrow
algorithm in approximating this function even when using only
five nodes.

4 Versatility and Robustness of Proposed Prototypes

4.1 Understanding Versatility of Prototypes. This work
would be trivial if the proposed forward-formulation-based proto-
types and their variants could only successfully be trained to ap-
proximate the specific nonlinearities that they were derived for. In
other words, a critical question is: “Can these prototypes and their
variants be successfully trained to approximate nonlinearities of
the same types but with different coefficients, or even nonlineari-
ties beyond those types?” The answer to this critical question is
positive. Indeed, the adaptivity of the proposed prototypes and
their variants has proven to be superior.

For a normalized input and output, Prototype 1, variant c, can
be used to train a range of fractional power nonlinearities �type V
in Fig. 2�, including x=y, x=y3, etc., in addition to the hard lim-
iting nonlinearity �type VIII� which it resembles most. Figure 7
further reveals the considerable adaptivity of Prototype 2, variant
a, which can be trained to approximate �i� a wide range of poly-
nomials, �ii� various combinations of piecewise polynomials, and
�iii� clearance �dead space� nonlinearities. This variant with only
four hidden nodes has demonstrated great flexibility to these
popular nonlinearities, from which the merit of using sigmoidal
functions as a unified basis in engineering mechanics applications
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can be verified. The proposed initialization methodology demon-
strates a constructive means to achieve this flexibility.

4.2 Approximating Piecewise Unsymmetrical Functions.
Although the proposed prototypes are derived to approximate
symmetrical and smooth nonlinearities, as demonstrated previ-
ously in Fig. 3, these prototypes have shown the ability to be
trained and converged well to piecewise unsymmetrical nonlin-
earities over the specified input range, as revealed in the middle
column of Fig. 7. Approximating these nonlinearities is of great
practical significance. First, they represent experimental phenom-
ena that can often be encountered in the practice of engineering
mechanics such as concrete in compression, and clearance �dead
space� joint behavior. Second, these situations involve the C1 dis-
continuity where �i� polynomial fitting normally cannot perform
as efficiently and �ii� the Fourier series causes nonuniform con-
vergence �the so-called Gibbs phenomenon�.

An idealized function typical of concrete in compression, a pa-
rabola joined by a horizontal line at its vertex, is approximated.
Figure 8 shows the training results using both the Nguyen–
Widrow algorithm and the proposed initialization methodology. It
can be seen that the joint of the curves is offset both horizontally
and vertically. Similar to Fig. 5, multiple options for the initial-
ization exist, following the proposed methodology; those pre-
sented are merely some possibilities.

4.3 Handling Noise in Data. Multilayer feedforward neural
networks are known to be robust to measurement noise in experi-
mentally collected data �21�. A selection from each nonlinearity in
Fig. 2 was contaminated with Gaussian noise to three different
degrees and then trained with the proposed initialization method-
ology and compared with the Nguyen–Widrow initialization �6�.
A typical example has been presented in Ref. �27�. When using
the proposed initialization, a good selection of variants seems to
make the training successful even with a high level of noise. Here
a good selection appears to be guided by the similarity between
the target function and initial neural network output, which will be
further discussed in Sec. 5.2. When the Nguyen–Widrow algo-
rithm is adopted, there are options leading to a successful training

even when the noise level is high. However, the procedure of
selecting the right Nguyen-Widrow option is uncertain due to the
highly random nature of this scheme.

5 Subjective Issues
As outlined previously in Sec. 2, the proposed initialization

methodology does contain subjective judgment, which originates
from �i� matching a target function with a collection of prepre-
pared prototypes and their variants as in Stages I and II and �ii�
deciding the free values for some of the weights and biases as in
Stage III. Since a matching process can be fundamentally consid-
ered a pattern classification problem, challenges arise when a pat-
tern falls onto the boundary between two patterns or when a
boundary itself is ambiguous. Varying the values of weights and
biases within a prototype/variant will alter the degree of similarity
between the target and the initial neural network output and will
thus affect the decision associated with the initialization. The fo-
cus of the discussion hereafter is given to making the best deci-
sion for a successful training in terms of convergence and ap-
proximation accuracy.

5.1 Multiple Options in Selecting Prototypes and Variants.
There are multiple options for initializing neural networks to ap-
proximate a given nonlinear function according to the proposed
methodology. The prototypes introduced in Fig. 2 may not be
exhaustive, nor are their combinations thought to be exhaustive.
Furthermore, the correlations between the target functions and the
prototypes or prototype combinations are not exhaustive. While
one prototype/variant can be used to approximate multiple nonlin-
earities, as shown in Fig. 7, one type of nonlinearity may be
successfully approximated by more than one prototype. The two
options for prototypes shown in Fig. 2 for the approximation of a
fractional power nonlinearity have been presented in Ref. �26�.
There appears to be a many-to-many relationship between types
of nonlinearities and prototypes, which should be confirmed in
future studies.

5.2 Deciding Free Values in Weights and Biases. In this
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Fig. 8 An example of using Prototype 2, variant a „with four hidden nodes…, to approxi-
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concrete in compression. The target function is in gray, while those black curves with
different line thicknesses show four random options using the Nguyen–Widrow initial-
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continuing development of previous efforts �15,17�, one of the
critical issues considered is how to decide the free values in the
weights and biases. On one hand, all the options in each training
example serve as case studies for the specified types of nonlin-
earities. On the other hand, the versatility explored in this study
indicates that one does not need to make the output of the initial
neural network match the target function exactly. Rather, one only
needs to capture the dominating features. This might seem to relax
the necessity of properly deciding the critical free values of the
weights and biases. However, there are still nontrivial questions
such as the following: �i� How should the major features of target
functions that are required for this initialization methodology be
defined? That is, what are the really “major” and “minor” fea-
tures? To what extent should the neural network initialization cap-
ture them to lead to successful training? �ii� To what extent should
one adjust the input layer weights IW, biases b, and layer weights
LW during the initialization, and to what extent should these be
left to training? Even though iterations are recommended, as
shown in Fig. 1, and although there are also some general treat-
ments on non-normalized inputs and outputs before and after
training, as discussed elsewhere �15–17�, there persists a practical
need to decide whether and how to adjust these values especially
for the purpose of real-time training.

The authors do not expect this paper to completely tackle all
these challenging issues. However two typical examples, one for
Step 1 and the other for Step 2 under Stage III, are presented to
suggest solution strategies. Note that some of them are not en-
tirely consistent with other studies on training neural networks.

To train a clearance �dead space� nonlinearity �type VII in Fig.
2�, Fig. 7 has suggested the possibility of using Prototype 2, vari-
ant a. Figure 9 presents a parametric study involving proportion-
ing and translation at Step 1, where different values for IW �be-
tween the two rows in the figure� and b �within each row� are
used. The three variants of Prototype 2 �with four hidden nodes�
with and without proportioning during Step 1 are selected for
training. It seems that commonly recommended small values of
IW �12,13� do not always lead to good training performance.
Rather, a high value of IW, along with an initial neural network
output that more closely resembles the target function, leads to

better training performance in this case.
The other example presented in Fig. 10 focuses on the effect of

scaling at Step 2 when the values of LW are adjusted according to
the range of a non-normalized output. It demonstrates that select-
ing proper values for LW can affect training performance and thus
requires careful consideration. This is not entirely consistent with
the findings of previous studies �31�. Again, it appears that trying
to find the closest “resemblance” could be a better strategy than
selecting small values for LW when direct training of a non-
normalized input and output data set is required.

6 Discussion
Admittedly, approximating functions by following this pro-

posed initialization methodology involves more preliminary work
than would be necessary if the Nguyen–Widrow initialization al-
gorithm were used. However, it should be noted that this study’s
primary aim is to clarify the use of neural networks, not to de-
crease the emphasis on the initialization. As has been shown in
this study, an additional consideration made when selecting a
proper neural network initialization more often results in a more
accurate approximation. Furthermore, it is envisioned that the de-
sirability of a prototype-based methodology like this one will in-
crease further once the prototype and variant selection process can
be automated, an avenue which has been identified for future
work.

Although analytical rather than experimental training data have
been used exclusively throughout, this study is still relevant for
general engineering mechanics applications. First, the work pre-
sents a set of specific tactics on how to approximate ten or even
more typical nonlinearities using multilayer feedforward neural
networks. Second, the results on the versatility of the proposed
prototypes show great promise for the success of applying this
initialization methodology to many other practical cases that are
not included in this paper. Finally, the authors have trained data
containing noise simulating real-world situations.

Mathematically, it is very important to note that throughout this
study, the proposed initialization does not involve considering the
orthogonality of the basis functions. Having orthogonal basis
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functions is always preferred in functional expansion �e.g., Fou-
rier expansion� and is also popular for data-driven techniques
�e.g., wavelet decomposition�. However, the goal and driving in-
terest of this study is not to look for a set of orthogonal sigmoidal
functions to start neural network training. Given the feasibility
proven by the universal approximator theorem �3,4�, this body of
work focuses on the constructibility which can be achieved by
injecting the domain knowledge and exercising clear engineering
judgement rather than treating the initialization largely as a trial-
and-error procedure.

Some topics are identified for future work in Fig. 1. For the
commonly seen nonlinear functions in engineering mechanics
studied here, the proposed initialization scheme seems to be ef-
fective �in terms of convergence of training� and efficient �in
terms of utilizing a small number of hidden nodes�. In regard to
approximation accuracy, the training performance time histories
of MSE versus epoch give a generally acceptable order of magni-
tude. For those examples where training stopped prematurely, one
of the causes could be an insufficient number of hidden nodes.
This indicates a need to study how to add extra sigmoidal terms
�i.e., hidden nodes� to improve approximation accuracy. Another
relevant topic to be addressed is the generalization of this study to
a high dimensional input space so that the memory and degrada-
tion of nonlinear dynamic systems can be modeled. The guiding
principle of exploiting mathematical reasoning and physical
meaning should be continually practiced to reveal the inner work-
ings of neural networks.

7 Conclusion
The core idea behind this study is the injection of mathematical

reasoning and physical meaning into the neural network initializa-
tion for a successful training. Neural networks can be highly ver-
satile and efficient in adapting to data when approximating non-
linear functions. However, these qualities can be achieved only if
neural networks are initialized properly, as constructively verified
in this study. A structured and detailed initialization methodology
has been presented as a continuous development of the heuristic
prototype-based initialization approach for multilayer feedforward
neural networks proposed in previous studies �15–18�. A range of
typical nonlinear functions used in engineering mechanics appli-
cations has been targeted, and training performance has been pre-
sented and compared with the Nguyen–Widrow initialization al-
gorithm. Technical challenges have been identified, and solution
strategies have been provided. The proposed initialization meth-
odology has shown satisfactory versatility and robustness in addi-
tion to being a constructive method.
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motopy analysis method. By giving a comparison with the existing results, it is shown that
the obtained analytic solutions are highly accurate and are in good agreement with the
results already present in literature. Also, the present analytic solution is uniformly valid
for all values of the dimensionless second grade parameter �. The effects of � and the
Prandtl number Pr on velocity and temperature profiles are discussed through graphs.
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1 Introduction
Exact solutions of the Navier–Stokes equations with nonvanish-

ing nonlinear terms can only be obtained in a small number of
cases. Each such solution is of considerable methodological inter-
est, even though not always of great physical importance. One
tractable similarity solution is that corresponding to viscous in-
compressible flow in the neighborhood of a two-dimensional stag-
nation point. In the beginning of the 20th century, the orthogonal
stagnation point flow was first studied by Blasius �1�. Heimenz �2�
presented the numerical solution to Blasius’s problem. Orthogonal
stagnation flow on oscillating and translating plates has been stud-
ied by Glauert �3�. Two-dimensional oblique stagnation flow was
solved by Stuart �4� and later by Davey �5� and Tamada �6�. The
heat transfer due to a jet impinging orthogonally onto a horizontal
moving surface has been solved by Dorepaal �7�.

In recent years considerable amount of interest has been given
to the stagnation point flows of viscous fluids �see, for instance,
Refs. �8–15��. This is because of their great importance in both
theoretical and practical points of views. From the theoretical
point of view, such kind of flow is fundamental in fluid mechanics
and forced convective heat transfer. From the practical point of
view, these flows have applications in forced convection cooling
processes where a coolant is impinged on a continuously moving
plate. Due to their important applications in industry, the non-
Newtonian fluids have received a lot of attention during the past
few decades. Unlike Newtonian fluids, the non-Newtonian fluids
could not be represented by a single flow model. There are many
empirical and semiempirical flow models for these fluids.
Amongst all these models, the second grade model has become
very much popular. The constitutive assumption for the fluids of
second grade or second order is in the following form:

T = − pI + �A1 + �1A2 + �2A1
2

where T is the Cauchy stress tensor, −pI is the spherical stress due
to the constraint of incompressibility, � is the coefficient of vis-
cosity, �1 and �2 are the material moduli, and A1 and A2 are the
first two Fosdick–Rajagopal tensors �16�. The Clausius–Duhem
inequality and the assumption that the Helmholtz free energy is a
minimum in equilibrium provides the following restrictions �17�:

� � 0, �1 � 0, �1 + �2 = 0

The third condition is the consequence of the Clausius–Duhem
inequality, and the second follows the requirement that the Helm-
holtz free energy is a minimum in equilibrium. A comprehensive
discussion on the restrictions for �, �1, and �2 can be found in the
work by Dunn and Rajagopal �18�.

In this paper we consider the steady three-dimensional viscous
stagnation point flow of a second grade fluid over a moving flat
plate. The same problem has already been studied by Baris �15�.
Baris applied the perturbation technique in order to reduce the
order of the governing nonlinear equations. The obtained zero-
order and first-order systems of nonlinear equations were then
solved numerically. The results obtained by Baris �15� are valid
only for 0���0.2. In order to investigate the flow phenomenon
for ��0.2, we have solved the same problem analytically by the
homotopy analysis method �HAM�. The results obtained by HAM
are purely analytic and uniformly valid for all values of �. The
numerical results of Baris �15� can easily be determined from our
present analytic solution by the suitable choice of the auxiliary
parameter �, which proves the accuracy of the present analytic
results.

Although the nonlinear analytic techniques are fast developing,
still they do not completely satisfy the mathematicians and engi-
neers. It is however still very difficult to solve nonlinear problems
by means of analytic techniques. The nonlinear analytic methods
most widely applied by engineers are perturbation techniques
�19�. Using the perturbation method, engineers have obtained
many interesting and important results. However, like other non-
linear analytic techniques, perturbation methods have their own
limitations. The application of perturbation techniques requires
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the presence of a small or large parameter in the equation, thus not
applicable to the problems involving no small or large parameter.
Even if such parameter is present, the obtained perturbation re-
sults are valid only for small or large values of that parameter.
Currently, Liao �20� introduced an analytic technique for highly
nonlinear differential equations arising in science and engineering.
Unlike perturbation techniques, the homotopy analysis method is
applicable to those nonlinear problems which do not involve any
small or large parameter. Besides, it logically contains the other
perturbative techniques, such as the Adomian’s decomposition
method �21�, the �-expansion method �22�, and Lyapunov’s small
parameter method �23�. The method has been successfully applied
to a large number of nonlinear problems by many researchers �see,
for instance, Refs. �24–39��, which proves the validity of the
method.

The paper is organized in four sections. Section 2 consists of
flow analysis in which we present an analytic solution of the prob-
lem, its convergence, and the graphical representation of solution.
Section 3 consists of heat transfer analysis. In Sec. 4 some con-
cluding remarks are given, and at the end some constants appear-
ing in the solution expressions are defined in the Appendix.

2 Flow Analysis
We consider an infinite plate adjacent to the xy-plane, and

z-axis is taken perpendicular to it. The plate is moving with a
constant velocity U in the x-direction. A non-Newtonian fluid of
grade 2 flowing in the negative z-axis approaches the moving
plate at z=0 and divides into streams proceeding away from the
stagnation point at the origin. Far from the plate, the velocity
components in x-, y-, and z-directions in the frictionless potential
flow are given by

u� = ax, v� = ay, w� = − 2az �1�

and the pressure distribution is given by the Euler equation

p − p0 = −
�

2
�u�

2 + v�
2 + w�

2� �2�

where a is a physical constant, � is the density of the liquid, and
p0 is a constant corresponding to the pressure at the stagnation
point. In order to get a solution which satisfies the no-slip bound-
ary conditions and agrees with the outer solution far from the
stagnation point, we shall seek a velocity field of the form

u = Uf�	� + axh��	�, v = ayh��	�, w = − 2�avh�	� �3�

where 
= � /� is the kinematic viscosity, 	=�a /
z, and the
primes denote the differentiation with respect to 	. The equations
governing such kind of flow of a second grade fluid in dimension-
less form are given by �15�

h� + 2hh� − h�2 + 1 + ��2h�h� − 2hhiv − h�2� = 0 �4�

f� + 2hf� − h�f + ��− 2hf� + h�f� − h�f� + h�f� = 0 �5�

subject to the boundary conditions

h = 0, h� = 0, f = 1 at 	 = 0

h� → 1, f → 0 as 	 → � �6�

where �=a�1 /� is the dimensionless second grade parameter.

2.1 Analytic Solution. We use the homotopy analysis method
to solve systems �4�–�6� analytically. Due to the boundary condi-
tions �Eq. �6��, the solution expressions for h�	� and f�	� can be
expressed in the following form:

h�	� = A0,0 + �
i=1

+�

�
j=0

+�

Ai;j	
je−i	 �7�

f�	� = �
i=1

+�

�
j=0

+�

Bi;j	
je−i	 �8�

respectively, where Ai;j and Bi;j are coefficients. They provide us
with the rule of solution expression, which plays an important role
in the framework of the homotopy analysis method. According to
the boundary conditions �Eq. �6�� and the foregoing rules of solu-
tion expressions defined by Eqs. �7� and �8�, we choose the initial
approximations

h0�	� = − 1 + 	 + e−	 �9�

f0�	� = e−	 �10�

and the auxiliary linear operators are given by

Lh�H�	;p�� =
�3H

�	3 −
�H

�	
�11�

Lf�F�	;p�� =
�2F

�	2 − F �12�

From Eqs. �4� and �5� we define the nonlinear operators

Nh�H�	;p�� =
�3H

�	3 + 2H
�2H

�	2 − � �H

�	
�2

+ 1 + �	2
�H

�	

�3H

�	3

− 2H
�4H

�	4 − � �2H

�	2 �2
 �13�

Nf�F�	;p�,H�	;p�� =
�2F

�	2 + 2H
�F

�	
−

�H

�	
F

+ ��− 2H
�3F

�	3 +
�H

�	

�2F

�	2

−
�2H

�	2

�F

�	
+

�3H

�	3 F � �14�

Let � denote the nonzero auxiliary parameter. We construct the
so-called zero-order deformation equations

�1 − p�Lh�H�	;p� − h0�	�� = p�Nh�H�	;p�� �15�

�1 − p�Lf�F�	;p� − f0�	�� = p�Nf�F�	;p�,H�	;p�� �16�

subject to the boundary conditions

H�0;p� =  �H�	;p�
�	


	=0

= 0, F�0;p� = 1

 �H�	;p�
�	


	=+�

= 1, F�+ �;p� = 0 �17�

where p� �0,1� is the embedding parameter. When p=0 and p
=1, we have

H�	;0� = h0�	�, F�	;0� = f0�	� �18�

and

H�	;1� = h�	�, F�	;1� = f�	� �19�

respectively. Thus, as p increases from 0 to 1, H�	� and F�	� vary
from the initial approximations h0�	� and f0�	� to the final solu-
tions h�	� and f�	� of the original equations �Eqs. �4�–�6��. As-
sume that the auxiliary parameter � is so properly chosen that the
Taylor series of H�	 ; p� and F�	 ; p� expanded with respect to the
embedding parameters, i.e.,

H�	;p� = H�	;0� + �
m=1

+�

hm�	�pm �20�
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F�	;p� = F�	;0� + �
m=1

+�

fm�	�pm �21�

where

hm�	� =
1

m!
 �mH�	;p�

�pm 
p=0

�22�

fm�	� =
1

m!
 �mF�	;p�

�pm 
p=0

�23�

converge at p=1. Then, from Eqs. �18� and �19�,

h�	� = h0�	� + �
m=1

+�

hm�	� �24�

f�	� = f0�	� + �
m=1

+�

fm�	� �25�

Equations �24� and �25� provide us with a relationship between
the initial guess solutions h0�	� and f0�	� and the unknown solu-
tions h�	� and f�	�, respectively. In order to get the governing
equations for hm�	� and fm�	�, �m�1�, we first differentiate m
times the two sides of equations �Eqs. �15�–�17�� about the em-
bedding parameter p. Then set p=0, and finally divide them by
m!. In this way we obtain the governing equations for hm�	� and
fm�	�, �m�1�,

Lh�hm�	� − �mhm−1�	�� = �Rm�	� �26�

Lf�fm�	� − �mfm−1�	�� = �Qm�	� �27�

subject to the boundary conditions

hm�0� = hm��0� = hm��+ �� = 0 �28�

fm�0� = fm�+ �� = 0 �29�

where

Rm�	� = hm−1� + �1 − �m� + �
k=0

m−1

�2hm−1−khk� − hm−1−k�hk�

+ ��2hm−1−k�hk� − 2hm−1−khk
iv − hm−1−k�hk��� �30�

Qm�	� = fm−1� + �
k=0

m−1

�2hm−1−kfk� + hm−1−k�fk + ��− 2hm−1−kfk�

+ hm−1−k�fk� − hm−1−k�fk� + hm−1−k�fk�� �31�

and

�m = �0 for m � 1

1 for m � 2
� �32�

We emphasize here that Eqs. �26�–�29� are linear for all m�1.
Also, the left hand sides of Eqs. �26� and �27� are governed by the
same linear operators Lh and Lf, respectively, for all m�1. These
linear operators can easily be solved especially by means of sym-
bolic computation softwares MATHEMATICA, MATLAB, etc. By solv-
ing Eqs. �26�–�29� for the first few values of m, we find that the
solution expressions can in general be expressed in the following
forms:

hm�	� = �
n=0

2m+2

�
q=0

2m+2−n

am,n
q	qe−n	 �33�

fm�	� = �
n=0

2m+2

�
q=0

2m+2−n

bm,n
q	qe−n	 �34�

where am,n
q and bm,n

q are constant coefficients of the series, which
can easily be determined through the following recurrence rela-
tions �m�1�:

am,0
0 = �m�2m+2am−1,0

0 − �
q=0

2m+2

�m,0
q�0,1

q − �
q=0

2m+1

�m,1
q�1,1

q

+ �
n=2

2m+2

�
q=0

2m+2−n

�n − 1��m,n
q�n,0

q − �
n=2

2m+2

�
q=1

2m+2−n

�m,n
q�n,1

q

�35�

am,0
k = �m�2m+2�2m+2−kam−1,0

k + �
q=k−1

2m+1

�m,1
q�1,k

q, 1 � k � 2m + 2

�36�

am,1
0 = �m�2m+1am−1,1

0 + �
q=0

2m+2

�m,0
q�0,1

q + �
q=0

2m+1

�m,1
q�1,1

q

− �
n=2

2m+2

�
q=0

2m+2−n

n�m,n
q�n,0

q + �
n=2

2m+2

�
q=1

2m+2−n

�m,n
q�n,1

q �37�

am,1
k = �m�2m+1�2m+1−kam−1,1

k + �
q=k−1

2m+1

�m,1
q�1,k

q, 1 � k � 2m + 1

�38�

am,n
k = �m�2m+2−n�2m+2−n−kam−1,n

k + �
q=k

2m+2−n

�m,n
q�n,k

q

2 � n � 2m + 2, 0 � k � 2m + 2 − n �39�

bm,1
0 = �m�2m+1bm−1,1

0 − �
n=2

2m+2

�
q=0

2m+2−n

m,n
q
n,0

q �40�

bm,1
k = �m�2m+1�2m+1−kbm−1,1

k + �
q=k−1

2m+1

m,1
q
1,k

q, 1 � k � 2m + 1

�41�

bm,n
k = �m�2m+2−n�2m+2−n−kbm−1,n

k + �
q=k

2m+2−n

m,n
q
n,k

q

2 � n � 2m + 2, 0 � k � 2m + 2 − n �42�

where the different constants involved in the above recurrence
relations are given in the Appendix.

Hence with the help of Eqs. �35�–�42�, one can easily find all
the constant coefficients of the solution series �Eqs. �33� and �34��
with the knowledge of the following:

a0,0
0 = − 1, a0,0

1 = 1, a0,1
0 = 1

a0,0
2 = a0,1

1 = a0,1
2 = a0,2

0 = a0,2
1 = a0,2

2 = 0 �43�

and

b0,1
0 = 1, b0,1

1 = b0,1
2 = b0,2

0 = b0,2
1 = b0,2

2 = 0 �44�

Therefore, the complete analytic solution can be written as
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h�	� = �
M=0

+�

hM�	� �45�

f�	� = �
M=0

+�

fM�	� �46�

2.2 Convergence of the Solution and Its Graphical
Representation. Liao �20� showed that as long as a solution series
given by the homotopy analysis method converges, it must be one
of the solutions. So, it is important to ensure the convergence of
the obtained solution series. As mentioned by Liao �20�, the con-
vergence of the solution series depends on the initial guess ap-
proximations, the auxiliary linear operators, and the nonzero aux-
iliary parameter �. Once the initial guesses and the auxiliary linear
operators are chosen, the convergence is then strongly dependent
on the auxiliary parameter �. The admissible values of � are de-
termined by drawing the so-called �-curves. For the problem un-
der discussion, we have plotted the �-curves �see Figs. 1 and 2� to
determine the admissible values of � in order to make the solution
series convergent. The intervals on �-axis for which the �-curve is
parallel to the �-axis represents the set of allowed values of �.

From Figs. 1 and 2 it is clear that by increasing the values of �
the interval of values of � shrinks down and shifts toward zero.
This is due to the fact that large values of � correspond to strong
nonlinearity, and when the nonlinearity becomes strong the choice
of values of � becomes more restricted. To prove the validity of
our HAM solution, we give a comparison between the present
results and the results obtained by Baris �15� �see, for instance,

Fig. 3�.
Notice that the results plotted in Fig. 3 are obtained at �=0.1

and �=−0.12. From Fig. 3 it is clearly seen that the present ana-
lytic solution is in good agreement with the numerical results
presented in Ref. �15�. Further, the present analytic solution is
uniformly valid for all values of the second grade parameter �, as
shown in Figs. 4–7.

3 Heat Transfer Analysis
The heat equation in dimensionless form is given by �15�

�� + 2Prh�� = 0 �47�
subject to the boundary conditions

��0� = 1, ��+ �� = 0 �48�

where Pr=�Cp /k is the Prandtl number, Cp is the specific heat,
and k is the thermal conductivity of the fluid. Notice that the
above Eq. �47� is modeled under the assumptions that the specific
heat and thermal conductivity of the fluid are assumed to be con-
stant. The heat flux vector is represented by Fourier’s law, and the
effects of the radiant heating and viscous dissipation are negli-
gible.

In order to find an analytic solution of Eq. �47� subject to the
boundary conditions �Eq. �48��, we follow the same procedure as
performed in the previous section. To avoid the repetition we now

Fig. 1 �-curves of h„�… plotted for different values of the pa-
rameter �

Fig. 2 �-curves of f„�… plotted for different values of the pa-
rameter �

Fig. 3 Comparison between the analytic solution and the nu-
merical data

Fig. 4 Effect of the parameter � on velocity distribution at
aU /x=0.01
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omit the details. Due to the boundary conditions �Eq. �48��, we
choose the initial guess approximation and the auxiliary linear
operator of the form

�0�	� = e−	 �49�

L��T�	;p�� =
�2T

�	2 − T �50�

We now construct the zero-order deformation equation

�1 − p�L��T�	;p� − �0�	�� = p�N��T�	;p�,H�	;p�� �51�
subject to the boundary conditions

T�0;p� = 1, T�+ �;p� = 0 �52�

where the nonlinear operator N��T�	 ; p� ,H�	 ; p�� is defined
through

N��T�	;p�,H�	;p�� =
�2T

�	2 + 2PrH
�T

�	
�53�

and correspondingly the mth-order �m�1� deformation equation
is given by

L���m�	� − �m�m−1�	�� = �Wm�	� �54�

�m�0� = 0, �m�+ �� = 0 �55�
where

Wm�	� = �m−1� + 2Pr�
k=0

+�

hm−1−k�k� �56�

By solving Eqs. �54� and �55� for the first few values of m, we
find that for a particular value of m the solution expression can
generally be written as

�m�	� = �
n=1

2m+2

�
q=0

2m+2−n

cm,n
q	qe−n	 �57�

where cm,n
q are the constant coefficients, which can easily be de-

termined by the following recurrence formulas �m�1�:

cm,1
0 = �m�2m+1cm−1,1

0 − �
n=2

2m+2

�
q=0

2m+2−n

�m,n
q
n,0

q �58�

cm,1
k = �m�2m+1�2m+1−kcm−1,1

k + �
q=k−1

2m+2

�m,1
q
1,k

q, 1 � k � 2m + 1

�59�

cm,n
k = �m�2m+2−n�2m+2−n−kcm−1,n

k + �
q=k

2m+2−n

�m,n
q
n,k

q

2 � n � 2m + 2, 0 � k � 2m + 2 − n �60�
where the constants appearing in the above relations are defined in
the Appendix.

So, with the help of the above recurrence relations, one can
easily determine all the unknown coefficients of the solution se-
ries �Eq. �57�� with the knowledge of the following:

c0,1
0 = 1, c0,1

1 = c0,1
2 = c0,2

0 = c0,2
1 = c0,2

2 = 0 �61�
Thus, the complete analytic solution in the form of an infinite
series is then given by

��	� = �
M=0

+�

�M�	� �62�

3.1 Convergence of the Solution and Its Graphical Rep-
resentation. To ensure the convergence of our HAM solution for
temperature distribution, we have plotted the �-curve in order to
find the admissible values of � �see Fig. 8�. It is also shown that
the numerical results of Ref. �15� can easily be determined from
our present analytic solution. For example, at �=0.2 and Pr=0.2,
the value of the heat transfer parameter ���0� calculated in Ref.

Fig. 5 Effect of the parameter � on velocity distribution at
aU /x=0.5

Fig. 6 Effect of the parameter � on nondimensional velocity
h�„�…

Fig. 7 Effect of the parameter � on nondimensional velocity
h„�…
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�15� is −0.384962, whereas our HAM solution yields −0.38434; at
�=0.2 and Pr=10 the value of ���0� given in Ref. �15� is
1.618727 and the present analytic solution gives 1.61415. We
mention here that the analytic approximations can further be re-
fined by calculating the higher-order approximations. However,
even at 12th-order approximation our analytic solution is in close
agreement with numerical results, which proves the validity of our
HAM solution.

In order to see the effects of the Prandtl number Pr and the
second grade parameter � on temperature profile, we have plotted
the graphs for different values of these parameters. In Fig. 9 the
temperature profile ��	� is plotted against the dimensionless inde-
pendent variable 	 for different values of the second grade param-
eter �. Clearly, an increase in � causes the temperature to in-
crease, but the effects of the Prandtl number Pr are quite opposite,
as shown in Fig. 10. At high values of the Prandtl number, the
temperature distribution is small. We mention here that the above
graphs are plotted at the 12th order of approximation. As we have
already mentioned in the previous section, the convergence of the
HAM solution is strongly dependent on the auxiliary parameter �.
Our analysis shows that for large values of the parameters � and
Pr, the solution series converges only for values of � close to zero.
This fact has already been discussed in the previous section
through Figs. 1 and 2.

4 Concluding Remarks
We have obtained the complete and purely analytic solution to

the steady three-dimensional stagnation point flow of a second
grade fluid with heat transfer analysis. It is shown that the solution
is uniformly valid for all values of the dimensionless second grade
parameter � and the Prandtl number Pr. The present analytic re-
sults �at suitably chosen values of �� are in good agreement with
the results obtained by Baris �15� for small values of �. Hence the
present solution also contains the results of Baris �15�. It is ob-
served that for large values of � and the Prandtl number, the series
solutions converge for values of � close to zero. We emphasize
here that the homotopy analysis method is a useful analytic tech-
nique for such kind of nonlinear problems.
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Fig. 8 �-curves of �„�… plotted at the 12th order of
approximation

Fig. 9 Effect of the parameter � on temperature distribution at
a fixed value of the Prandtl number Pr

Fig. 10 Effect of the Prandtl number Pr on temperature distri-
bution at a fixed value of the parameter �
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Modeling Helicopter Blade
Sailing: Dynamic Formulation
and Validation
Rotor blade sailing, which is characterized by excessive deflection of rotor blades, can be
experienced by shipboard helicopters during rotor start-up and shut-down. In an attempt
to model the complete ship-helicopter-rotor system in a way that is geometrically repre-
sentative and computationally efficient, the system was represented as a discrete-property
rigid-body and flexible-element system capable of simulating many important dynamic
effects that contribute to the motion of rotor blades. This paper describes the model in
detail and discusses validation cases. While both dynamic effects and aerodynamic effects
are believed to be important components of blade sailing, this paper focuses exclusively
on the dynamics. The validation cases discussed herein suggest that the modeling ap-
proach presented offers excellent potential for efficiently modeling blade sailing and
other blade motion phenomena. �DOI: 10.1115/1.2957599�

Keywords: blade sailing, tunnel strike, shipboard helicopter, multibody dynamics, La-
grangian dynamics, dynamic interface analysis, rotor engage/disengage, motion coupling

1 Background
Ensuring the safety of shipboard helicopters, during all phases

of operation, is challenging and important. During start-up and
shut-down operations on ship decks, helicopter rotor elastic re-
sponse is of concern for flight and personnel safety reasons. While
the rotors are engaged or disengaged, they turn at low speeds and
therefore can be subjected to high wind-induced aerodynamic
forces without the benefit of the centrifugal stiffening present at
normal operating speeds. This excitation, combined with ship
deck motion during all but the most benign sea and wind condi-
tions, can cause excessive deflection of rotor blades, and as a
result, the blades can come into contact with the fuselage or tail-
boom of the helicopter. This phenomenon, called “tunnel strike”
or “tailboom strike,” compromises the safety of flight crews, re-
sults in airframe damage, and may bring the airworthiness of the
helicopter into question.

Over the past 20 years, the blade sailing phenomenon has been
extensively studied �1�. Although blade sailing occurrences were
documented much earlier, as with the H-46 Sea Knight, which
came into operation in the shipboard environment in 1964, pub-
licly available research on blade sailing began in the 1980’s �2,3�.
Hurst and Newman addressed the aerodynamic aspects of the is-
sue by comparing airwakes measured in the wind tunnel with full
scale data �4�, by proposing simple airwake gust models that were
intended to capture the important components of steady airwake
�5�, and by examining the effect of a more complex experimental
airwake on blade sailing depending on the position of the helicop-
ter on the flight deck �6�. Newman modeled the blade dynamics
using the first four structural modes of semirigid rotors �4,5� and
articulated rotors �6�. These results have been compared to vali-
dation data from wind tunnel experiments and full scale trials.
Geyer, Smith, and Keller also made significant contributions to
the body of work on blade sailing by using finite elements to
model rotor dynamics �7� and by adding torsional flexibility,
which influences the aerodynamic loads through blade twist. They
have used Newman’s simplified gust models �8� and a steady flow

airwake model derived from computational fluid dynamics �9� to
achieve aerodynamic loading. Parametric studies have been con-
ducted on some of the factors that may contribute to the blade
sailing phenomenon, including rotor collective setting �10�. The
behavior of flap and droop stops has been studied independently
using validation experiments on the subject �11,12�. Bottasso and
Bauchau focused on the dynamics of the blade sailing problem,
using a library of predefined and prevalidated finite elements to
create a multibody formulation that simulates the rotor behavior
with droop and flap stop impacts �13�. Kang and He used com-
mercial software to develop a multibody formulation of a helicop-
ter and ship, including realistic ship motion and contributions
from the helicopter suspension to the dynamics of the problem
�14�.

Three effects have been identified as potential major contribu-
tors to the blade sailing phenomenon and are thus being consid-
ered in the current research program: helicopter dynamics, ship
motion, and aerodynamics. The dynamics, including helicopter
suspension and blade flexibility in all directions, characterize how
the blade responds to a variety of inputs. Ship motion is transmit-
ted through the landing gear of a helicopter and may significantly
affect blade dynamic response. Aerodynamic effects are believed
to contribute to the serious blade deflections that characterize
blade sailing. Specifically, ship airwake turbulence and ship roll-
ing motion induce unsteady loading, particularly at rotor-system
resonant frequencies and thus must be modeled. Despite the ex-
isting body of knowledge on blade sailing, the relative contribu-
tion of dynamics, aerodynamics, and ship motion is not system-
atically understood and there is much room for research in the
field of blade sailing phenomena. As part of an ongoing study in
which the unsteady aerodynamic effects will be considered, this
paper describes in detail the development and validation of the
dynamic model, which includes the effect of realistic ship motion.

2 Modeling
The dynamic modeling of helicopter rotor blades is an active

field. Kunz summarizes blade modeling methods developed dur-
ing the first 40 years of the helicopter �15�. Detailed models have
been developed for rotors with hinges and those without �16�,
using analytical methods and finite elements �17�. Results from
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many of these have been used to validate the dynamic model
described herein.

The current research uses a dynamic helicopter and blade
model that is based on the philosophy that a flexible continuous
system can be modeled with reasonable accuracy using a series of
discrete rigid bodies and flexible elements, provided that the dis-
crete properties are representative of the real system and that an
adequate number of degrees of freedom is included �18,19�. The
approach supports incorporation of geometric nonlinearities and
modal coupling. Rigid-body models of systems are at an advan-
tage over continuous models in that a closed-form set of dynamics
equations can be easily derived. This characteristic leads to equa-
tions that are easily and quickly handled by numerical solvers.
Some assumptions are required in the definition of a rigid segment
model for a flexible system; the major one being that continuous
deformation characteristics can be assumed to act at point loca-
tions. Once the model has been defined, the solution is exact for
that model and no terms need be neglected to achieve solvability.
As far as the authors are aware, this modeling approach has not
previously been used in the blade sailing context.

The dynamic model was developed according to the modeling
priorities summarized in the following.

• Blade flap is the motion of greatest concern, since it is the
primary motion in blade sailing. Torsion, to the extent that it
affects aerodynamic loads and thus flap, is also of concern.
This includes flap-twist coupling. Lead/lag, while included
in the model, is of lesser concern.

• The small angle assumption for blade flap deformation is
invalid since blade sailing deflections can be severe. The
rigid-segment model allows the analyst complete freedom in
choosing the number of segments, thereby introducing the
possibility of large angles through individual joints.

• Blade sailing occurs at low rotor speeds and exhibits mainly
rigid body and first elastic mode oscillation of the rotor
blades. Effects acting in the range of 0.1–3 Hz are carefully
included; effects acting at greater than 10 Hz are of lesser
concern.

• Blade extension flexibility was not modeled, as the exten-
sion is minimal at low rotor speeds.

• Model versatility, in the sense that all system properties can
be easily modified by the analyst, is of utmost importance.
Efforts were made to allow a wide range of options and
operating conditions.

• Time domain results are desired.

The developed mathematical model represents the ship-
helicopter-rotor system shown in Fig. 1. The helicopter, which has
been approximately modeled as a midsize maritime helicopter
�such as an Augusta-Westland EH101�, operates from the flight
deck of a typical frigate. The helicopter body is modeled as a
single rigid body and the rotor blades are each divided into a
series of rigid segments that are connected by three-dimensional
rotational springs. These springs allow blade flexibility in the tor-
sion, flap, and lead/lag directions. Ship motion excites the heli-
copter body through a suspension system model, and the ship
airwake excites blade segments through an aerodynamic model.
Other external forces are easily included in the system dynamics
without affecting the modeling approach or changing the basics of
the derived equations of motion.

It is worthwhile to briefly describe the system of body-fixed
coordinate systems, and the related nomenclature, used to derive
the equations of motion. The approximate locations of these can
be seen in Fig. 1.

The global or inertial coordinate system, G, is a translating-
earth reference frame. It exists at the center of the flight deck
when all ship motions, except constant forward speed, are zero.
All dynamic equations are ultimately expressed in the global
frame of reference. The orientations of this and subsequent refer-
ence frames are defined by Bryan Euler angles.

The ship frame of reference, S, is defined relative to the global
coordinate system and originates at the center of the flight deck.
The position of the ship frame is given by the ship motion algo-
rithm and is in the form �surge, sway, and heave�. The orientation
of the ship is given by �roll, pitch, and yaw�, which are assumed
equal to the frame Bryan angles. This assumption is inherent in
linear ship motion theory, which is widely used �20�, and is valid
if only one rotation angle is expected to be large at a time.

The helicopter coordinate system, H, is also defined relative to
the global system. The coordinate system has its origin at the
helicopter center of mass.

The rotor frame of reference, R, is a coordinate system that
defines the axis of the rotor and allows the blades to turn together.
It is defined relative to the helicopter frame of reference, and the
origin is located at the center of the rotor hub in line with the
plane of the blades. The first two Bryan angles are defined by the
helicopter geometry and set the axis of rotation for the rotor. The
final Bryan angle varies with time in accordance with a represen-
tative rotor engage or disengage profile.

The flexible interfaces between the rigid blade segments are
referred to as “joints.” The first joint is the interface between the
rotor hub and the first segment. This joint is referred to as the
“root.” If the helicopter rotor being modeled is of the articulated
type, then the root joint is modeled as a hinge. Semirigid rotors
have flexible root joints, but they do not have hinges.

The blade segment reference frames, B�i,n�, are defined relative
to the rotor reference frame, R, if i=1, or relative to the previous
blade segment reference frame, Bi−1,n, where i represents the
blade segment number starting with 1 at the inboard segment.
Each segment is defined with properties m�i,n�, the segment mass
which is assumed concentrated at a point in space, �rb�i,n�

�, at the

mass center of the segment, and �J�i,n��, the segment rotational
inertia matrix about its center of mass. Each blade segment is
connected to the last at point �rB�i,n�

� in the coordinate system of

the preceding segment. This location should be coincident with
the local shear center of the blade cross section, which can change
with radial position. These joints have a rotational element stiff-
ness matrix, �k�i,n��, and viscous rotational damping coefficient
matrix, �c�i,n��. The subscripts �i ,n� indicate that the quantity is
specified for the ith segment on the nth blade and that each �i ,n�th

quantity can be defined independently from the others. Thus, the
blade need not be uniform, straight, or untwisted, the elastic axes
and joints need not lie along a straight axial line, and the joints
need not be equidistant. Since the properties can be individually
assigned to each segment, they can be tuned to approximate
closely any continuous and generally nonuniform rotor blade. As
with variable finite element gridding, shorter segments can be
used in areas of higher flexibility, while longer segments can be
used in stiffer areas. The total number, size, and shape of the blade
segments are completely definable.

The Bryan angles for each segment can be used to track blade
torsion, bending, and lead-lag in time. If the local orientation
angles of each blade segment are small, then a linear approxima-
tion of each local transformation matrix could be used while
maintaining the overall ability of the model to capture large dis-
placements. This approximation was not utilized in order to avoid

Fig. 1 The model coordinate systems
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the modeling restriction that the number of rigid segments be
sufficient to maintain each local angle in the linear range.

The rigid blade segment coordinate systems, Brigid�i,n�, define
the undeflected shape of the blade. They are based on the unde-
flected Bryan angles for the �i ,n�th segment and allow any struc-
tural deviations from a straight blade to be assigned. These sys-
tems are used as a reference for the spring energy calculations at
each joint and for calculating hinge friction. For an undeflected
blade, the coordinate system B�i,n� is coincident with Brigid�i,n�.

Model degrees of freedom are defined as the position and ori-
entation of the helicopter coordinate system, and the relative ori-
entations of the blade segments, with the exception torsion on the
first segment of each blade. This is because the “torsion” at the
first joint is defined by predefined time-varying collective and
cyclic angles. Also defined by time-varying functions are ship
motion and rotor rotation.

The axial extension is known to be a dynamic variable of im-
portant consideration for flexible bodies rotating at high veloci-
ties. In addition to small axial displacements which can affect the
final blade tip location, the axial extension is known to change
slightly the torsional rigidity of blades with structural twist. This
coupling between axial extension and torsion can lead to changes
in the aerodynamic angle of attack at high rotor speeds. Discrete
axial flexibility and the related coupling effects could be included
in a similar manner as the torsional and bending flexibilities, as
shown in Ref. �21�, without rendering the equations of motion
unsolvable. Since the blade sailing phenomenon is believed to
occur at low rotational speeds �less than 50% full speed�, the axial
extension effects are believed to be minor and have therefore not
been included in the current version of the dynamic model.

2.1 Equations of Motion. The equations of motion for the
ship-helicopter-rotor system were derived using Lagrange’s equa-
tion, and distilled symbolically into the matrix form of Newton’s
second law �22�. The equations were then converted to first order
and time-history solution was propagated using a conventional
numerical integrator. A summary of the modeling of each system
component in Lagrange’s equation follows.

2.1.1 Kinetic and Gravitational Energy. The translational ki-
netic energy, rotational kinetic energy, and gravitational potential
energy all depend on the absolute body positions and velocities,
which have not been linearized. The expressions contain charac-
teristic cascading sums and products that vary in size with blade
and segment number. The derivation of the terms in Lagrange’s
equation has proven challenging owing to the variability of the
equations; however, a procedure has now been defined for a simi-
lar planar problem �22�. Expanding these methods into the three-
dimensional case is straightforward, yet interesting, and shall be
discussed in the Appendix.

2.1.2 Blade Joint Spring Potential Energy. The flexibility in
helicopter rotor blades is simulated at the joints that connect the
rigid blade elements. Since the Euler angles that define the motion
at each joint do not explicitly give the displacements of the indi-
vidual joint springs, the projected rotation angles must be calcu-
lated to find the individual linear spring forces about each axis.
Structural coupling can be preserved by employing a fully popu-
lated stiffness matrix, such that the potential energy of each joint
is given by

U�i,n� = 1
2 ���i,n��T�k�i,n�����i,n�� �1�

where

���i,n�� = ��x�i,n�

�y�i,n�

�z�i,n�
� �2�

and the components of ���i,n�� are projected angles.

2.1.3 Blade Root Potential Energy. Depending on whether the
helicopter being modeled has semirigid or articulated rotor blades,
the root modeling requirements change. If the blades are semi-
rigid, they can be approximated by a cantilever beam-type model,
and the joint is modeled similar to the outboard segment joints.

Articulated blades are hinged at the root. In this case, the joint
itself has lesser or no stiffness to approximate a hinge and the
blade must then be supported at low rotational speeds by droop
stops. At operational speeds, the inertial moment lifts the rotor off
the stops, and thus they are often retracted. Flap stops prevent the
blade from excessive upward flapping during engage and disen-
gage, and they also retract and extend at a given rotational speed.
The lead/lag stops, often hydraulic or elastomeric dampers, simi-
larly restrict blade motion outside a given acceptable range of
motion; however, their modeling is simplified by the fact that they
do not extend or retract during operation. These blade motion
limits are modeled using additional rotational springs and dampers
at the blade root when the angle of blade displacement at the root
exceeds the acceptable deadband range.

The stiffness curve for these elements is shown in Fig. 2 where
the subscript m refers to quantities in the range of negative �
values. The subscript p refers to quantities in the positive range of
�. The negative and positive properties can be defined separately.
The quantities k, kfs, and kds refer to the joint stiffness, flap stop
stiffness, and droop stop stiffness, respectively. For the lead/lag
stops, kfs refers to the stiffness of the stop when the joint angle is
negative, and so on. While the root hinge joint can be assigned a
stiffness value as per the figure, it is usually set to zero since the
hinges do not exhibit spring characteristics between the stop
regions.

The discontinuity between the stopping element and the hinge
stiffness is smoothed with a cubic function as shown in Fig. 2
where the coefficients of the smoothing function are a, b, c, and d.
The values �1m and �1p are the stop contact angles in the negative
and positive angular directions, respectively. The values �2m, �2p,
Mm, and Mp are selected so that the curve fit occurs over a small
angle and the shape of the curve does not include inflection points.

The extension and retraction of droop and flap stops presents
some interesting modeling challenges. For instance, they retract
and extend at a given rotational speed; however, they cannot ex-
tend or retract if the blade is in contact with the stop when the
critical speed is reached. In addition, the extension and retraction
must occur over some measurable time and the blade might come
into contact with the stop during the process. The extra applied
moment due to the stop is assumed to vary linearly between its
fully engaged value and zero during the extension and retraction
process. These operational cases are all modeled and handled us-
ing appropriate logic within the simulation.

For use in Lagrange’s equation, the potential energy expression
for the variable spring element shown in Fig. 2 is

Fig. 2 General stiffness curve for blade root springs
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U�1,n� =�
Mm� + 1

2kfs�
2 − kfs�2m� + C1 if − � � � � �2m and � � �fs

1
4am�4 + 1

3bm�3 + 1
2cm�2 + dm� + C2 if �2m � � � �1m and � � �fs

1
2k�2 + C3 if �1m � � � �1p or � � �ds or �fs

1
4ap�4 + 1

3bp�3 + 1
2cp�2 + dp� + C4 if �1p � � � �2p and � � �ds

Mp� + 1
2kds�

2 − kds�2p� + C5 if �2p � � � � and � � �ds

� �3�

where the constants C1–C5 do not appear in the equations of
motion. The polynomial coefficients am, bm, ap, bp, etc., are the
negative and positive angle equivalents of the coefficients shown
in Fig. 2. The quantities �, �ds, and �fs refer to the rotor speed
and the stop retraction speed for the droop and flap stops, respec-
tively. In the case of the lead/lag stops, the conditions on � do not
apply since they do not retract and extend.

2.2 Nonconservative Contributions. Many system compo-
nents contribute to the equations of motion as nonconservative
effects. These include the suspension forces, including the effect
of ship motion; the damping forces associated with the blade seg-
ment joints and the blade stopping elements; aerodynamic effects;
and any other applied forces. The details of each contribution are
briefly discussed.

2.2.1 Ship Motion and Suspension. When exposed to dynamic
sea conditions, a ship will respond with motion in six degrees of
freedom: three translational motions: surge, sway, and heave; and
three angular motions: roll, pitch, and yaw. Ship motion is often
obtained by multiplying the spectra of ship response, called re-
sponse amplitude operators �RAOs� �20�, by the incoming wave
spectrum �23�. This yields a representation of the ship motion in
the frequency domain, which can be used to generate a time-
history of ship motion at the center of mass, or at some other point
such as the center of the flight deck, using a Fourier series. Once
the RAOs have been determined either computationally or experi-
mentally �24�, the displacement of each ship degree of freedom
can be reconstructed, typically with 40 frequency components.
The amplitudes and frequencies are found using simulated models
of ship behavior, and the phase is generated randomly to enhance
simulation fidelity �25�.

Once the ship motion has been determined, the suspension
forces on the helicopter body can be calculated. The number of
suspension points is selected by the analyst, with definable geom-
etry and characteristic properties. In the helicopter coordinate sys-
tem, the vertical suspension stiffness can be largely attributed to
the oleo, or other vertical suspension element, in addition to the
tire. The horizontal stiffnesses can be attributed to the behavior of
the tire. The current model assumes that the helicopter is secured
such that the tires cannot slide, roll, or lift off the deck.

The suspension stiffness and damping forces are assumed to be
quadratically related to suspension displacement and velocity, re-
spectively, in each orthogonal force direction in the helicopter
frame of reference. The location of application of the forces
should be clarified. The true point of application is the deflected
suspension contact point. However, since the suspension motions
are not defined as system degrees of freedom, the force applica-
tion points are approximated as the undeflected suspension contact
points.

2.2.2 Articulated Hinge Friction. The friction that exists in an
articulated blade root hinge, flap, or lead/lag is an important part
of the model. The frictional moment due to hinge friction is con-
sidered to depend on the friction force acting between the sliding
surfaces of the hinge and the radius of the hinge pin. A continuous

approximation for the theoretical discontinuous friction function
can be achieved using a modified friction function, which includes
the Schiller friction model �26�. In this model, two quantities, �
and �, scale the smoothing components of the modified functions.
The quantity � is a small positive velocity, which represents the
time constant of the smoothing exponential decay from the static
peak of the friction function to the sliding friction component. The
smaller the velocity, the more representative the continuous ap-
proximation. A value of �=1 /0.02� provides good smoothing
through zero velocity without largely affecting the magnitude of
the static friction peak.

Owing to the fact that the equations of motion are formulated
using Lagrange, the reaction forces in each hinge joint are
calculated separately using a method suggested by Kane and
Levinson �27�. This method assumes an additional translational
degree of freedom in the hinge joint, which is the direction of the
reaction force desired, and then sums the inertial and active forces
to zero. The unknown in this summation is the reaction force
vector. The forces normal to each hinge are extracted from this
reaction force vector and used in the Schiller friction model.

2.2.3 Blade Joint Damping. The blade segment damping con-
sists of a number of possible components, depending on the
blades being modeled. The following rotational viscous damping
terms can be independently defined:

• the structural damping associated with the outboard blade
joints;

• the root joint damping, having a damping value consistent
with a semirigid joint or a hinge; and

• additional damping associated with the flap/droop and lead/
lag stops, applied when the blade root angle is in the appli-
cable range and the stops are extended.

In order that the damping of the motion stops be applied only in
the angular range over which the stops act, the damping force is
multiplied by the filter, f , which has a value of 1 in the angular
range of the stop and zero otherwise. A smoothing function, with
the same transitional angles as for the stop stiffness profile, is used
to eliminate the discontinuity that occurs when the stops are
impacted.

The damping moment about one hinge due to the corresponding
motion stops is therefore calculated by applying the filter value
using

Mdamping = �− fcfs�̇ if � � 0 and � � �fs

− fcds�̇ if � � 0 and � � �ds
� �4�

where cfs and cds are the damping coefficients of the flap and
droop stops, respectively. As with droop and flap stop stiffnesses,
the extension and retraction of the flap and droop stops means that
the extra damping is only applied if the rotor angular velocity is
below the critical speed for flap and droop stop extension, �fs and
�ds, respectively.
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2.2.4 System Proportional Damping. The model also contains
a proportional damping feature, which allows the user to employ a
linearized proportional damping relationship

�Clinear� = a�Mlinear� + b�Klinear� �5�

where the constants a and b are user defined. In the proportional
damping model, the linear mass and stiffness matrices �Mlinear�
and �Klinear� are calculated about a specified operating point such
that �Clinear� remains constant throughout the simulation.

In the model, the analyst has the option to toggle proportional
damping on and off, or apply proportional damping to certain
degrees of freedom and not to others. This is done by zeroing the
unwanted columns and rows in the linearized proportional damp-
ing matrix. Proportional damping can be applied in addition to
other forms of damping available in the model; if multiple damp-
ing sources exist, they are superimposed.

2.3 Blade Motion Coupling. There are several sources of
blade motion coupling which should be included in any helicopter
blade model in order to correctly capture blade response to a
variety of conditions. The rigid-segment model captures all these
coupling sources either through a fully populated stiffness matrix
or because the equations of motion have not been linearized.

Dynamic Coupling. This arises from out-of-plane gyroscopic
motion captured by the dynamics in the equations of motion.

Inertial Coupling. This occurs if the blade mass center axis is
offset from the elastic axis. As the rotor turns, the centrifugal force
that is generated will result in blade deflections. Similarly, flap
and lead-lag can lead to coupled torsional motion about the elastic
axis.

Structural Coupling. This results from a blade shear center that
is offset from the elastic axis. It can occur on isotropic and com-
posite blades.

Composite-Structural Coupling. This occurs as a result of the
composite fibers in the lay-up of a composite rotor blade.

Twist Coupling. This can include effects from the other types of
coupling but emphasizes the idea that the coupling properties of
the blade will change with radius if a built-in twist angle is
present.

2.4 Property Determination. A challenge of the rigid-
segment model is property determination, especially the stiffness
properties of the blade segments. Three determination methods are
here proposed; the most appropriate one for a given situation de-
pends on the information available.

2.4.1 Property Tuning. This method involves tuning the blade
response by comparing the rigid-segment results with experimen-
tal �or some other known� results. Depending on the available
information, the researcher may have to make some assumptions
about the model, and combine these with the available data to
arrive at a complete set of properties. The tuning method often
requires iteration and more than one set of data such that the
properties can be tuned to one set and then validated against an-
other.

2.4.2 Deflection/Load Case Fit. If a certain deflection shape
resulting from a known load case exists, then the individual joint
stiffnesses can be calculated by matching the deflections at each
joint to the known profile given the same load case. The
Bernoulli–Euler beam equation gives a straightforward way to
estimate a deflected shape for a simple load case such as a tip
force or a uniformly distributed blade weight.

Linear cantilever beam theory also provides a convenient way
of estimating the stiffness of a continuous uniform blade if the
natural frequencies are known.

2.4.3 Direct Method. If detailed continuous stiffness distribu-

tions for the blade are available, then the discrete joint stiffnesses
can be calculated directly. Much research is currently being con-
ducted regarding the calculation of coupled stiffness matrices for
helicopter rotor blades �28�, especially in composite blade appli-
cations, where the coupled components are known to be signifi-
cant. One typical formulation gives the blade energy per unit
length, Ub /L stored in a deflected beam as

Ub

L
=

1

2
�	̄�T�kb��	̄� �6�

where

�	̄� = ��1�

u3�

u2�
� �7�

The quantity �1 is the twist about x, and u2 and u3 are deflec-
tions of the beam reference line in y and z, respectively.

Here, �	̄� contains the curvatures in torsion, flap, and lead/lag,
respectively. These represent the rate of change of displacement
angle. Equation �6� is compared to Eq. �1�, where ���i,n�� is a
measure of the change in angle across a joint, an effective curva-
ture. By considering a beam segment of length L= l�i,n� and the
definition of a derivative, it can be justified that

�	̄� 	
���i,n��

l�i,n�
�8�

By substitution, it can then be shown that the discrete stiff-
nesses are simply the continuous stiffnesses divided by the length
of the segment over which they act.

�k�i,n�� =
�kb�
l�i,n�

�9�

The accuracy of the approximation is good, provided the cur-
vature does not change significantly along the length of each in-
dividual blade segment. This can be managed by the user by care-
ful selection of segment length based on the geometry, properties,
and other model conditions. The direct method was validated us-
ing the tuning approach previously detailed.

2.4.4 Example. The time-history of blade tip deflection for an
actual nonrotating blade on a typical maritime helicopter was cap-
tured on video. Based on the frequency exhibited in the video, an
effective stiffness for an equivalent isotropic uniform beam can be
estimated. If a model of this helicopter is desired, then one of the
following blade models could be developed.

Case 1. If the blade resting on the droop stops is assumed a
cantilever with no initial hinge angle, and the total blade mass is
known, then the blade can be sectioned into segments of equal
length, equal mass, and equal stiffness and damping properties
then can be tuned to achieve similar tip response.

Case 2. If the blade resting on the droop stops is assumed a
cantilever with no initial hinge angle, and the mass distribution as
a function of radius is available, then the blade can be sectioned
into segments with appropriate masses and the appropriate stiff-
ness and damping properties can be found using the deflection/
load fit for a cantilever beam subject to gravity and its own
weight. Figure 3 shows the experimental data compared to the
simulation results for a hingeless blade approximated by different
numbers of blade segments.

Case 3. If the droop stops are modeled using the hinge and
droop stop model described above and the mass distribution as a
function of radius is available, then a different set of equivalent
stiffnesses can be achieved using the deflection/load fit.

Table 1 shows first natural frequency and static deflection re-
sults for the test blade in flap modeled using Bernoulli–Euler
beam theory and the three test cases. Case 1 and the Bernoulli–
Euler beam theory frequencies are similar because both assume
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uniform beam properties. Cases 2 and 3 allow variable mass and
stiffness properties, and therefore agree with the experimental re-
sults, which also include variable mass and stiffness. This valida-
tion case begins to show the suitability of the discrete approach
for modeling beams with variable properties.

3 Model Validation
The numerical simulation is undergoing a lengthy process of

validation to explore the level of applicability of this model to the
blade sailing phenomenon. The characteristic of most concern is
the behavior of the segmented blade as a flexible body. This
means consistency of natural frequencies, coupled and uncoupled,
and consistency of deflected shapes, both static and dynamic. The
vibration properties of helicopter blades are known to change with
blade rotation speed, as the centrifugal and tensile forces in the
blade change its effective stiffness. These effects and the ability of
the simulation to deal with them have been explored. The final
characteristic of concern is the coupling of blade motions due to
structural considerations such as blade twist and elastic axis
offset.

3.1 Blade Bending Behavior. In the blade sailing context,
the behavior of the blade in bending, especially in flap, is of
specific interest. A wide variety of continuous blade and beam
bending models exist, and the performance of the rigid-segment

model was validated against these and experimental data in order
to show the appropriateness of the rigid-segment model for simu-
lating blade behavior.

3.1.1 Large Deflections. Since blade sailing can involve large
deflections, a model that captures bending of a geometrically lin-
ear beam is insufficient. The static flap deflections of a uniform
isotropic beam with a vertical load applied at the tip are shown in
Fig. 4. Ten identical rigid segments were used to model the beam,
and the results are compared to published results �29�. The rigid-
segment results agree very well with the published values.

The large deflections in a dynamics sense were also validated
using a uniform isotropic beam undergoing spin-up from rest to a
constant rotational speed in the horizontal plane. The beam is
extremely flexible in the lead-lag direction, and since the model
applies no damping, it oscillates as a result of the initial rotational
acceleration. The number of segments required to achieve numeri-
cal convergence was examined, and six segments were selected as
a good compromise between solution accuracy and solution
speed. The time-history of beam tip deflection for a six-segment
beam shows a satisfactory agreement, within 4%, with the nonlin-
ear finite element solutions �30,31� in Fig. 5.

3.1.2 Flapping Behavior With Rotational Speed. The bending
frequencies of rotating blades are known to increase with rota-
tional speed as a result of the centrifugal forces acting on the
blade. An assumed mode solution to Lagrange’s equation for a
continuous uniform isotropic beam is used to validate this capa-
bility of the rigid-segment model �32�. Figure 6 shows a fan plot,
which includes the rigid body and first elastic flapping modes of a
blade with six rigid segments. Satisfactory agreement, within
1 rad /s, is shown between the rigid segment solution and the
Lagrangian solution.

3.2 Blade Motion Coupling. The ability of the rigid-segment
model to capture blade motion coupling has been validated using
published cases.

3.2.1 Dynamic (Gyroscopic) Coupling. Classical helicopter
theory textbooks discuss blade motion coupling that occurs be-
tween flap and lead/lag due to the Coriolis coupling when the
blade is rotates at a constant speed. Articulated rotors allow this
coupled motion since motions about the lead/lag hinge and the
bending hinge are essentially unrestrained. A simplified set of
equations of motion is solved to give the moment at the lead/lag
hinge that would be required to restrain the motion of a rigid
articulated blade in lead/lag �32�. This moment is

Fig. 3 Blade response in flap to a pull test „hingeless blade
with varying number of segments…

Table 1 Summary of results for bending vibration cases

Stiffness Mass
Freq

�rad/s�
Static

 �m�

Model
case 1

Discrete,
uniforma

Discrete,
uniform

7.07 0.307

Bernoulli–
Euler beam

Continuous,
uniform

Continuous,
uniform

7.06 0.305

Model
case 2

Discrete,
variableb

Discrete,
variablec

7.11 0.305

Model
case 3

Discrete,
variableb

Discrete,
variablec

7.11 0.305

Expt. Continuous,
variable

Continuous,
variable

7.11 0.305

aEqual joint rotational spring stiffnesses approximate some variable continuous stiff-
ness profile.
bVariable joint rotational spring stiffnesses properly tuned approximate uniform con-
tinuous stiffness.
cDiscrete variable masses are chosen to be representative of the real blade, with the
blade tip much lighter than the blade root.

Fig. 4 Large bending tip deflections due to static tip force „ten
segments…
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N = − 2Jyr��̇ sin � �10�

where N is the moment about the lead-lag �z� axis, Jyr is the
moment of inertia about the flap �y� axis through the joint instead
of the center of gravity, � is the rotational speed of the hub
�constant�, and � is the flap angle. Figure 7 shows that the appli-
cation of an equal and opposite moment N restrains the lead/lag
motions to zero as soon as the initial transient response is re-
moved with light damping.

3.2.2 Inertial Coupling. The definable properties of the model
allow for the mass centers to be offset from the elastic axis, which
is along the �x� axis of the blade segment in question. This causes
a structural coupling of the natural frequencies of vibration such
that most natural modes will contain both a bending and torsional
component.

The inertial coupling between flap and torsion can be shown by
solving for the coupled natural frequencies of an isotropic beam
with a swept tip �17,33�. Lead-lag is also coupled in that the
system is rotated at constant speed in the plane of the sweep angle
and the beam achieves a steady-state deflection in the lead-lag
sense for swept tip angles different from zero.

The first three bending-torsion coupled modes for a beam turn-
ing at 8.3 Hz are shown in Fig. 8. The rigid-segment model agrees
with the published data to within 12% �1 Hz� for the fundamental
mode and within 5% �2 Hz� for the second and third. This under-
prediction can likely be rectified by careful tuning of the root
stiffnesses. In the figure, a rule-of-thumb approach was applied, in

which the root stiffness is 2.15 times the calculated value for the
other joints, provided the beam is uniform and the segment
lengths are consistent. Still, the effects of tip sweep on the fre-
quency trends are well captured.

3.3 Droop and Flap Stop Validation. The behavior of the
droop and flap stops is important for the blade sailing of articu-
lated blades. If the blades come into contact with the stops with
significant kinetic energy, then it is transferred to potential energy,
and the blades can undergo large deflections. The behavior of the
blades when they come into contact with the stops has been vali-
dated against experimental results �11�, where the details of the
experimental blade can be found in Ref. �34�.

Figures 9 and 10 show the tip deflection and the hinge angle,
respectively, compared with the published experimental data. The
rigid-segment model captures the general shape, magnitudes, and
frequencies of the major blade response characteristics. Similar
differences between numerical and experimental results are shown
in Ref. �13�.

4 Conclusions
The approach to helicopter modeling as discussed in this paper

has been shown to attack the problem in a functional and versatile
manner. The generality of the problem definition allows quick and
easy parametric studies of a wide variety of situations. The indi-
vidual components of the model have been validated, and the
most important cases have been carefully discussed.

Fig. 5 Beam spin-up validation „finite element results from „1…: Ref. †30‡
and „2…: Ref. †31‡…

Fig. 6 Variation in flapping frequencies with rotor speed
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The numerical model will be expanded to include an airwake
turbulence model that contains spatially and temporally correlated
turbulence based on statistical information gathered experimen-
tally. The model will then be validated against experimental data
from a series of tests on a scaled aeroelastic blade. The numerical
model can then be used to study the blade sailing phenomenon.
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Appendix: Derivation of General Conservative Expres-
sions

The extension of the general conservative energy expressions
developed in Ref. �22� from the planar to the three-dimensional
case is worth discussing. As an example to illustrate some impor-
tant points, the kinetic energy arising from the horizontal �X� com-
ponent of velocity associated with the masses of the blade seg-
ments of blade n shall be studied.

Before continuing with the description of the model, it is pru-
dent to address some nomenclature. The quantity �rab

� is the po-
sition vector �ra� defined in coordinate system b. If the subscript a
refers to a coordinate system, then the position vector identifies
the origin of coordinate system a in b. Transformation matrices
are of the form �Rab� and refer to a rotational transformation from
the a coordinate system to the b coordinate system.

The kinetic energy expression for the three-dimensional case is
given by

TX�n� =
1

2

i=1

ns

m�i,n���1 0 0��ṙb�i,n�G
��2 �A1�

where

Fig. 7 Lead/lag motion restrained by Bramwell moment

Fig. 8 First three flap-coupled frequencies for swept tip beam „experimen-
tal data from Ref. †33‡…

Fig. 9 Droop stop test blade tip deflection „experimental data
and published results from Ref. †11‡…
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�ṙb�i,n�G
� = �ṙHG

� + �ṘHG��rDH
� + 


k=1

i−1 ��ṘHG��RRH�n���
j=1

k

�RB�j,n�B�j−1,n�
��rB�k,n�B�k−1,n�

� + �RHG��ṘRH�n���
j=1

k

�RB�j,n�B�j−1,n�
��rB�k,n�B�k−1,n�

�

+ 

h=1

k

�RHG��RRH�n����
=1

h−1

�RB�,n�B�−1,n�
��ṘB�h,n�B�h−1,n�

�� �
�=h+1

k

�RB��,n�B��−1,n�
��rB�k,n�B�k−1,n�

�
+ �ṘHG��RRH�n���

j=1

i

�RB�j,n�B�j−1,n�
��rb�i,n�B�i,n�

� + �RHG��ṘRH�n���
j=1

i

�RB�j,n�B�j−1,n�
��rb�i,n�B�i,n�

�

+ 

h=1

i

�RHG��RRH�n����
=1

h−1

�RB�,n�B�−1,n�
��ṘB�h,n�B�h−1,n�

�� �
�=h+1

k

�RB��,n�B��−1,n�
��rb�i,n�B�i,n�

�

where the distance vectors �rHG
� and �rDH

� refer to the globally
defined position of the helicopter center of mass and the
helicopter-defined position of the center of the rotor hub, respec-
tively. The rotational matrix �RB�1,n�B�0,n�

� given inside the product

operators is equivalent to �RB�1,n�R
�.

In comparison, the expression for the kinetic energy arising
from the horizontal component of velocity of the port blade for
the planar model is given by �22�

TX�1� =
1

2

i=1

ns

m�i,1���ẎC − v�̇ sin�� + a�

− 

k=1

i �sin�� + 

j=1

k

��j,1���̇ + 

j=1

k

�̇�j,1�d�k,1�

+
1

2�sin�� + 

j=1

i

��j,1���̇ + 

j=1

i

�̇�j,1�d�i,1�2
�A2�

where the planar orientation of the helicopter body is given by �
and the flap orientations of the blade segments are given by ��i,1�.
The length of each blade segment is given by d�i,1�, and the center
of mass is assumed to act halfway along the segment length. The
quantity YC describes the horizontal position of the helicopter cen-
ter of mass, and the quantity �v sin��+a�� gives the horizontal
distance from the helicopter center of mass to the blade attach-

ment point, and a and v are geometrical constants defined in Ref.
�22�.

The indices i and k represent the summation of equivalent phe-
nomenon in both expressions and are subject to the index replace-
ment rule described in Ref. �22�. The summation of cascading
angles, given by index j in Eq. �A2�, which is responsible for
causing the index replacement rule, appears in a slightly different
form in Eq. �A1�. In the three-dimensional case, the expressions
for blade position, velocity, and angular velocity are derived in
vector form and are given in the global coordinate system through
a series of cascading matrix transformations, which are given by
the product operator, also in index j.

Two cases that result from the extension of the procedure into
three dimensions are worth mentioning. First, when the energy
expressions are differentiated with respect to time, an additional
summation appears, shown in Eq. �A1� in index h. This results
from the fact that the product rule must be applied to all the
matrices in the cascading matrix product, since all depend on the
variable time. When differentiating with respect to configuration
coordinates or their derivatives as with Lagrange’s equation, the
differentiation quantity appears in only one matrix in each product
and therefore the extra summation does not result. The product
indices  and � result from the same phenomenon, and simply
allow the cascading rotational matrix to which the time derivative
is applied to be advanced from one to the next.

Second, a complete expression of the kinetic energy resulting
from the horizontal component of velocity requires that this quan-
tity be summed over the total number of blades present in the
system �given as an index in n�. The index replacement rule does
not apply to this summation index since the degrees of freedom
for each blade are independent and differentiation with respect to
any one of them will result in zero components for all blades
except the one of interest.

The derivation of all the required expressions for Lagrange’s
equation can be arrived at straightforwardly provided care is taken
to ensure that the index replacement rule is applied only when
necessary based on the logic given in Ref. �22�.
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Rayleigh Quotient and Dissipative
Systems
Rayleigh quotients in the context of linear, nonconservative vibrating systems with vis-
cous and nonviscous dissipative forces are studied in this paper. Of particular interest is
the stationarity property of Rayleigh-like quotients for dissipative systems. Stationarity
properties are examined based on the perturbation theory. It is shown that Rayleigh
quotients with stationary properties exist for systems with proportional viscous and non-
viscous damping forces. It is also shown that the stationarity property of Rayleigh quo-
tients in the case of nonproportional damping (viscous and nonviscous) is conditional
upon the diagonal dominance of the modal damping matrix. �DOI: 10.1115/1.2910898�

1 Introduction
In his classical treatise on the theory of sound �1�, Rayleigh has

introduced the notion of a quotient of two quadratics representing
the potential and kinetic energies of a vibrating system. Since
then, Rayleigh quotient has been widely applied in the analysis of
many vibrating systems and their associated linear algebraic ei-
genvalue problems. Rayleigh quotient provides a variational ap-
proach to estimate the eigenvalues of an algebraic, generalized
eigenvalue problem, as in the case of determining the natural fre-
quencies of a vibrating system. Numerical methods to solve ei-
genvalue problems such as the shifted inverse power method rely
on the properties of Rayleigh quotients for speedier convergence
�2�. Thus, the practical utility of the Rayleigh quotient is wide
ranging.

Traditionally, and in many textbooks on vibration analysis �3,4�
and linear algebra �2,5�, a Rayleigh quotient is defined as a ratio
of two quadratics. In the case of a generalized eigenvalue problem
involving two real and symmetric matrices A and B, the Rayleigh
quotient is defined as follows:

R�u� =
uTAu

uTBu
, Av = �Bv �EVP� �1�

where the eigenvalue problem is abbreviated as EVP.
The stationarity properties of this “classical” Rayleigh quotient

are well established �2�. The objective of the present investigation
is to explore whether similar Rayleigh-like quotients with station-
ary properties exist for a vibrating system with dissipation. Dis-
crete vibrating systems are chosen here for the purpose of illus-
tration; generalization of the results to continuous systems is
straightforward.

This paper is presented as follows. Rayleigh quotients for dis-
crete systems are defined in Sec. 2. Three quotients are introduced
in the case of a viscously damped system and their stationary
properties are investigated in Secs. 3 and 4. Rayleigh quotients in
the context of nonviscously damped systems are studied in Sec. 5.
The importance of Rayleigh quotients studied here is illustrated in
Sec. 6, and main conclusions emerging from this study are sum-
marized in Sec. 7. Throughout this study, the terms modes and
eigenvectors are used interchangeably.

2 Rayleigh Quotients for Discrete Systems
Small oscillations of a discrete, linear vibrating system with

viscous damping about its equilibrium position are governed by
the following equations of motion:

Mẍ + Cẋ + Kx = f �2�

where the matrices M, K, and C are, respectively, the mass, stiff-
ness, and damping matrices and the vectors x and f denote the
displacement response and applied forces, respectively. In the ab-
sence of damping and applied forces, the above equation simpli-
fies to

Mẍ + Kx = 0 �3�

The above equation leads to a linear, algebraic eigenvalue prob-
lem for the natural frequencies of free vibration, denoted by �,
given as follows:

Ku = �Mu �4�

where the eigenvalue � is related to the frequency via �=��.
Here, the positive branch of the square-root operation is assumed.
u is the eigenvector �mode shape� associated with the eigenvalue
� �or vibration mode with natural frequency ��. For linear sys-
tems that obey Rayleigh’s reciprocity principle, the matrices M
and K are symmetric. This implies that the solutions of the eigen-
value problem in Eq. �4�, � and u, are real.

In the context of vibration analysis of undamped systems, the
two quadratic functions in the Rayleigh quotient assume the
physical meaning of the kinetic and potential energies. Thus, as-
sociated with any admissible deformation vector ���, one can
define the following quantities:

U = �TK�, T = �TM�

R��� =
U
T =

�TK�

�TM�
�5�

where T and U are the kinetic and potential energies of the system
and R is the classical Rayleigh quotient.

However, when systems with dissipation are considered, one is
faced with three quadratics. In this situation, one can define three
quotients as follows:

U = �TK�, T = �TM�, D = �TC�

R1��� =
U
T =

�TK�

�TM�

R2��� =
D
T =

�TC�

�TM�
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R3��� =
D
U =

�TC�

�TK�
�6�

Note that for Rayleigh quotient to be finite, the denominator terms
in the above equation should not be equal to zero. This requires
that M be positive definite for R1 and R2 to be finite, and K be
positive definite for R3 to be finite. For majority of vibrating sys-
tems, M is positive definite while K need not be. Thus, the exis-
tence of R3 is case specific.

It is the objective of this work to investigate the stationarity
properties of the quotients defined in Eqs. �5� and �6�. The proof
of stationary property of the quotient defined in Eq. �5� is well
known �2,5,6�. However, it is repeated here for the sake of com-
pleteness and also since the proof of stationarity for other quo-
tients closely follows a similar procedure.

2.1 Stationarity of R„�…. Let a vector � be chosen such that
it is close to one of the eigenvectors �modes� ur of the system so
that we can express � as

� = �
i

ciui = ur + �
i�r

�iui, �i =
ci

cr
� 1 �7�

where �i is a small real quantity. Now, the Rayleigh quotient reads

R��� =
�TK�

�TM�
=

ur
TKur + 2�i�r

�iui
TKur + O��2�

ur
TMur + 2�i�r

�iui
TMur + O��2�

�8�

here, the symmetry of M and K is assumed. Due to the orthogo-
nality properties of the eigenvectors �2,5�,

ui
TMu j = �ij, ui

TKu j = 0, ui
TKui = �i �9�

Equation �8� simplifies to

R��� =
�r + O��2�
1 + O��2�

= �r�1 + O��2�� �10�

The above result proves the stationarity of the Rayleigh quotient,
i.e., first order changes in � lead to second order changes in R���.
When � is close to one of the eigenvectors, the corresponding
value of the quotient is stationary. Further choosing the first ei-
genvector as the trial vector � leads to a minimum value of R���.
R��� is maximum when the trial vector is close to the eigenvector
corresponding to the highest eigenvalue. For intermediate eigen-
vectors, R��� is neither a minimum nor a maximum, i.e., R��� is
at a saddle point. A mini-max �or inf-sup� principle due to Courant
and Fischer applies in this case �2,6�.

3 Proportional Damping
We consider first the case of proportional damping. Here, pro-

portional damping is defined in the sense that the same vector �
simultaneously diagonalizes the three quadratics T, U, and D. In
other words, the three matrices M, K, and C can be simulta-
neously diagonalized. Although a viscous damping matrix of the
form C=�M+�K is the most widely understood model of a pro-
portional damping model, it is only a subset of a wider class of
models �7�. The necessary and sufficient conditions for propor-
tional damping are established in Ref. �7� and revisited in Refs.
�8–11�. Adhikari �10� showed that viscously damped linear sys-
tems will have classical normal modes if and only if the damping
matrix can be represented by

�a� C=M�1�M−1K�+K�2�K−1M�
or

�b� C=�3�KM−1�M+�4�MK−1�K

where �i�•� are smooth analytic functions in the neighborhood of
all the eigenvalues of their argument matrices. Rayleigh’s result
can be obtained directly from this “generalized proportional

damping” as a special case by choosing each matrix function �i�•�
as a real scalar times an identity matrix, that is �i�•�=�iI. In the
case of proportionally damped systems, the eigenvectors are real
but the eigenvalues are not, i.e., the undamped modes are also the
modes of the proportionally damped system. Thus, the proof of
stationarity of the first Rayleigh quotient R1��� is the same as that
given in Sec. 2.1.

We consider the second Rayleigh quotient associated with any
admissible deformation vector � as defined in Eq. �7�,

R2��� =
�TC�

�TM�
=

ur
TCur + 2�i�r

�iui
TCur + O��2�

ur
TMur + 2�i�r

�iui
TMur + O��2�

�11�

here, the symmetry of M and C is assumed. Due to the orthogo-
nality properties of the eigenvectors,

ui
TMu j = �ij �12�

We define

ui
TCu j = Cij� , ui

TCui = Cii� �13�
With the above definition, Eq. �11� can be expressed as

R2��� =
Crr� + 2�i�r�iCir� + O��2�

1 + O��2�
�14�

When damping is proportional, the matrix Cir� is diagonal, i.e.,
Cir� =0 for i�r. In this case, the above equation simplifies to

R2��� =
Crr� + O��2�
1 + O��2�

= Crr� �1 + O��2�� �15�

which proves the stationarity of Rayleigh quotient in the case of a
proportionally damped system.

Similar proof can be constructed for R3���. The equation cor-
responding to Eq. �15� in this case will read as

R3��� =
Crr� + O��2�
�r

2 + O��2�
=

Crr�

�r
2 �1 + O��2�� �16�

4 Nonproportional Damping
We consider the case of nonproportional damping wherein the

damping matrix C cannot be diagonalized simultaneously with M
and K matrices. Consequently, the vector � is not necessarily real.
Vibrating systems with nonproportional damping are known to
possess complex modes in general. Physically, the complex modes
represent nearly standing waves. For systems with small dissipa-
tion, a perturbation theory originally due to Rayleigh �1� can be
used to represent the complex modes in terms of the real modes of
the undamped system.

According to the first order perturbation theory �12�, the com-
plex modes of a viscously damped system are related to the cor-
responding undamped modes by

zn � un + ı�
k�n

�knuk where �kn =
�nCkn�

�n
2 − �k

2 � 1 �17�

The undamped modes are mass normalized i.e., un
TMun=1. In the

above equation, C� is the damping matrix in modal coordinates,
i.e., Ckn� =uk

TCun. The assumption in the perturbation theory is that
the terms of the order �kn

2 are very small and hence negligible.
When k and n refer to two adjacent modes, the coefficient �kn

can be related to the modal overlap factor defined as 	kn

�
n�n / ��k−�n� and the ratio �kn=Ckn� /Cnn� by �kn

��1 /2�	kn�kn. Notice that �kn is a measure of the diagonal domi-
nance of the C� matrix. 	kn is a measure of the spacing of adja-
cent modes normalized with respect to the half power bandwidth
of each mode. Thus, significantly complex modes are to be ex-
pected when the modal damping matrix is not diagonally domi-
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nant and the modal overlap is not small. Unless the modal overlap
factor is of the order of unity, the second and higher order powers
of the �kn can be safely ignored. If not, then the perturbation
expansion has to be extended suitably until the imaginary part of
the complex mode converges. Adequacy of the first order theory
for systems with small damping has been shown in Ref. �12�.

Since the complex eigenvectors zi , i=1¯n form the complete
basis in an n dimensional complex vector space, any arbitrary
complex vector � can be written as

� = �
i

cizi �18�

We select a vector close to zr, which can be written as

� = zr + �
i�r

�izi, 	�i	 = 
 ci

cr

 � 1. �19�

We consider the first real valued Rayleigh quotient associated
with the above trial vector,

R1��� =
�HK�

�HM�
=

zr
HKzr + 2�i�r

R��i�zi
HKzr + O�	�	2�

zr
HMzr + 2�i�r

R��i�zi
HMzr + O�	�	2�

�20�

Noting the orthogonality properties given in Eq. �9�, one can de-
duce the following equations:

zr
HMzr = 1 + O��2� �21�

and

zi
HMzr = O��2� �22�

Similarly with K, one can show

zr
HKzr = �r

2 + O��2� �23�

and

zi
HKzr = O��2� �24�

Substituting Eqs. �21�–�24� in Eq. �20�, one obtains

R1��� =
�r

2 + O��2� + O��2�
1 + O��2� + O��2�

� �r
2�1 − O��2�� �25�

which proves the stationarity of R1���.
We consider the second real valued Rayleigh quotient defined

as follows:

R2��� =
zHCz

zHMz
�26�

Substituting Eq. �17� in the above equation leads to

R2��� =
�HC�

�HM�
=

zr
HCzr + 2�i�r

R��i�zi
HCzr + O�	�	2�

zr
HMzr + 2�i�r

R��i�zi
HMzr + O�	�	2�

�27�

Now zr
H Czr can be expanded as

zr
HCzr = �ur

T − ı�
k�r

�kruk
T�C�ur + ı�

k�r

�kruk�
= Crr� − ı�

k�r

�kr�uk
TCur − ur

TCuk� + O��2� = Crr� + O��2�

�28�

Note that C is assumed to be symmetric in simplifying the above
equation. Similarly, one can write

zi
HCzr = �ui

T − ı�
k�i

�kiuk
T�C�ur + ı�

k�r

�kruk�
= Cir� − ı�

k�i

�kiCkr� + ı�
k�r

�krCik� + O��2�

= Cir� + O��� + O��2� �29�
Substituting Eqs. �21� and �22�, and Eqs. �28� and �29� in Eq. �27�,
one obtains

R2��� =
Crr� + 2�i�r

R��i�Cir� + O���O��� + O��2� + O��2�

1 + O��2� + O��2�
�30�

It can be seen that first order changes in � lead to first order
changes in R2���. However, if the modal damping matrix is di-
agonally dominant, i.e.,

Cir�

Crr�
� 1 �31�

then first order changes in � lead to second order changes in
R2���. In this case, stationarity of the Rayleigh quotient is ob-
tained.

Returning to the third quotient R3���,

R3��� =
�HC�

�HK�

=
Crr� + 2�i�r

R��i�Cir� + O���O��� + O��2� + O��2�

�r
2 + O��2� + O��2�

�32�
The above quotient is not stationary in general. However, when
the modal damping matrix is diagonally dominant in accordance
with Eq. �31�, stationarity of R3��� can be shown as earlier �see
Sec. 3�.

In the case of a complex vector �, one is also tempted to define
complex valued Rayleigh quotients by replacing the Hermitian
transpose �complex conjugate transpose� with the ordinary trans-
pose operator. The stationarity property of these complex valued
quotients, however, cannot be shown. Hence, the discussion of
these quotients will not be pursued any further.

5 Nonviscous Damping
In this section, we consider general linear damping models,

described by convolution integrals of the generalized coordinates
over appropriate kernel functions. The equation of motion of a N
degrees-of-freedom nonviscously damped system is given by

Mẍ�t� +
−

t

G�t − ��ẋ���d� + Kx�t� = f�t� �33�

Here, G�t� is a N�N matrix of kernel functions. It will be as-
sumed that G�t� is a symmetric matrix so that reciprocity auto-
matically holds. In the special case when G�t�=C��t�, where ��t�
is the Dirac delta function and C is a N�N matrix, Eq. �33�
reduces to the standard form for viscous damping.

Taking the Fourier transform of Eq. �33�, the eigenvalue equa-
tion can be expressed as

− �n
2Mzn + ı�nG��n�zn + Kzn = 0 �34�

where G��� is the Fourier transform of G�t�. In general, G��� is a
complex valued function of �. For viscously damped system,
G���=C , ∀�. Equation �34� is a nonlinear eigenvalue problem. In
contrast with the viscously damped case, the number of eigenval-
ues will not necessarily be equal to 2N, since additional eigenval-
ues may be introduced by the form of the functions G��n�. Wood-
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house �12� and Adhikari �13� have treated this problem using a
first order perturbation method assuming the damping to be small.
We suppose the undamped problem has eigenvalues �natural fre-
quencies� �n and eigenvectors �modes� un. The complex eigenval-
ues can then be expressed as

�n � � �n + ıGnn� ���n�/2 �35�

where Gkl� ��n�=uk
TG��n�ul is the frequency dependent damping

matrix expressed in normal coordinates. Since the inverse Fourier
transform of G��� must be real, it must satisfy the condition
G�−��=G���*, where �•�* denotes complex conjugation. It fol-
lows that the eigenvalues of the generally damped system appear
in pairs � and −�* �unless � is purely imaginary�. The first order
approximate expression for the complex eigenvectors can be ob-
tained in a way similar to that used for the viscously damped
system �as was first given by Rayleigh �1��. The result is

zn � un + ı�
k�n

�knuk where �kn =
�nGkn� ��n�
��n

2 − �k
2�

�36�

Note that the eigenvectors also appear in complex conjugate pairs.
Since, in general, Gkn� ��n� will be complex, in contrast to the
viscously damped case, the real part of natural frequencies and
mode shapes do not coincide with the undamped ones. Adequacy
of the first order theory for systems with small damping has been
investigated in Refs. �12,13�.

Since the complex eigenvectors zi , i=1¯N form the complete
basis of an N-dimensional complex vector space, any arbitrary
complex vector � can be expressed as

� = �
i

cizi �37�

We consider a vector close to zr, which can be written as

� = zr + �
i�r

�izi, 	�i	 = 
 ci

cr

 � 1 �38�

Replacing the matrix G��r� with M and noting the orthogonality
properties given in Eq. �9�, one obtains

zr
HMzr = 1 + O�	�	2� �39�

zi
HMzr = O�	�	2� �40�

Similarly with K, one obtains

zr
HKzr = �r

2 + O�	�	2� �41�

zi
HKzr = O�	�	2� �42�

We consider the first Rayleigh quotient

R1��� =
�HK�

�HM�
=

zr
HKzr + 2�i�r

R��i�zi
HKzr + O�	�	2�

zr
HMzr + 2�i�r

R��i�zi
HMzr + O�	�	2�

�43�
Substituting Eqs. �39�–�42� in the above equation, one obtains

R1��� =
�r

2 + O�	�	2� + O��2�
1 + O�	�	2� + O��2�

� �r
2�1 − O��2�� �44�

which proves the stationarity of R1���.
The second and third Rayleigh quotients involving the damping

term need to be carefully defined. The difference between the
viscous and the nonviscous case is that the �effective� damping
matrix for the nonviscous case is complex valued and a function

of frequency. Therefore, in order to define a meaningful Rayleigh
quotient, we need to select a value of frequency. If we are inter-
ested in studying the stationary behavior of rth mode, then it is
logical to select the frequency value as �r. We define the real
valued Rayleigh quotient for a nonviscously damped system as

R2��,�r� =
	�HG��r��	

�HM�
�45�

For a viscously damped system G��r�=C , ∀r and because C is a
real matrix, Eq. �45� reduces to Eq. �26� as a special case. There-
fore, Eq. �45� can be viewed as a generalization of the Rayleigh
quotient defined in Eq. �26�.

Substituting Eq. �36� in the above equation leads to

R2��� =
�HG��r��

�HM�

=
	zr

HG��r�zr + 2�i�r
R��i�zi

HG��r�zr + O�	�	2�	

zr
HMzr + 2�i�r

R��i�zi
HMzr + O�	�	2�

�46�

The first term in numerator can be expressed as

zr
HG��r�zr = �ur

T − ı�
k�r

�
kr
* uk

T�G��r��ur + ı�
k�r

�kruk�
= ur

TG��r�ur − ı�
k�r

��
kr
* − �kr��uk

TG��r�ur

− ur
TG��r�uk� + O�	�	2�

= Grr� + 2ı�
k�r

I��kr��uk
TG��r�ur

− ur
TG��r�uk� + O�	�	2�

= Grr� + O�I���� + O�	�	2� �47�

where Grr� =ur
TG��r�ur. Note that G��r� is assumed to be symmet-

ric in simplifying the above equation. From the second term in the
numerator of Eq. �46�, one has

zi
HG��r�zr = �ui

T − ı�
k�i

�
ki
*uk

T�G��r��ur + ı�
k�r

�kruk�
= ui

TG��r�ur − ı�
k�i

�
ki
*uk

TG��r�ur

+ ı�
k�r

�krui
TG��r�uk + O�	�	2�

= Gir� + O��� + O�	�	2� �48�

where Gir� =ui
TG��r�ur.

Substituting Eqs. �47�, �46�, �45�, �44�, �43�, �42�, �41�, and �40�
in Eq. �46�, one obtains
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R2��� =
	Grr� + 2�i�r

R��i�Gir� + O���O��� + O��2� + O�I���� + O�	�	2�	

1 + O��2� + O�	�	2�

�
	Grr� 	 + 2�i�rR��i�	Gir� 	 + O���O��� + O��2� + O�I���� + O�	�	2�

1 + O��2� + O�	�	2�
�49�

The last line in the above equation follows from the triangle in-
equality. The terms involving O�I���� are smaller than O�	�	�
terms. Moreover, for lightly nonviscous systems, the terms involv-
ing O�I���� are expected to be smaller than the O�R���� terms
�14�. As a result, one expects to have the inequality

O�I���� � O�R���� � O�	�	� �50�

From Eq. �49�, it can be seen that first order changes in � lead to
first order changes in R2���. However, if the complex modal
damping matrix is diagonally dominant, i.e.,

	Gir� 	
	Grr� 	

� 1 �51�

then first order changes in � lead to second order changes in
R2���. In this case, stationarity of the Rayleigh quotient is
obtained.

Returning to the third quotient, the equation corresponding to
Eq. �46� in the case of R3��� is

R3��� =
	�HG��r��	

�HK�
�

	Grr� 	 + 2�i�r
R��i�	Gir� 	 + O���O��� + O��2� + O�I���� + O�	�	2�

�r
2 + O��2� + O�	�	2�

�52�

The above quotient is not stationary. However, when the modal
damping matrix is diagonally dominant in accordance with Eq.
�31�, stationarity of R3��� holds.

6 Application of Rayleigh Quotients
In the case of a single degree of freedom system with viscous

damping the three quotients simplify to R1=�2, R2=2
�, and
R3=2
 /�, where � and 
 denote the natural frequency and the
critical damping factor, respectively. The response of the system
in the time domain is described by exp�−
�t− ı��1−
2t�. We
note that R2 governs the decay rate �or real part of the complex
eigenvalue� of vibration in the time domain. The same will be true
for a multidegree of freedom system, provided that its response
can be decomposed into a single degree of freedom system using
modal summation i.e., damping is proportional �3�.

The Rayleigh quotient R1 and its usefulness in solving the ei-
genvalue problem associated with the undamped system are well
documented �2,3,5�. Consequent to the stationary property of R1, a
theorem originally due to Rayleigh, known as Rayleigh’s principle
or interlacing theorem, gives the influence of constraints. It states
that the eigenvalues of the constrained system ���� interlace with
the eigenvalues of the unconstrained system ��� such that �n

��n���n+1.
Similar results follow from the stationarity of R2 and R3. In this

context, we refer to Rayleigh’s original statement in Sec. 88 of
Ref. �1�: “… theorems, of importance in other branches of sci-
ence, may be stated for systems such that only T and F, or only V
and F, are sensible.” We note that T�T, V�U, and F�D in the
notation of the present paper. Thus, stationarity of R2 implies that
the decay rates of each normal mode are stationary. The interlac-
ing theorem would suggest that the decay rates of each normal
mode also interlace when a constraint is applied. The interlacing
property was discussed in Sec. 88 of Ref. �1� and a less known
work of Rayleigh �15�. The present study extends these ideas to
the general case of nonconservative systems with viscous or non-
viscous dissipative processes.

In a viscoelastic system, one deals with elastic potentials and
dissipative potentials. Stationarity of R3 has important conse-
quences for such problems, especially in conjunction with the
interlacing theorem. A noteworthy work on applying the Rayleigh
quotients to determine the elastic and material loss constants of
orthotropic sheet materials was undertaken in Refs. �16,17�.

Our primary aim in this work has been to show the range of
applicability of stationarity principles in nonconservative viscous
and nonviscous systems. Further application of these results re-
mains to be explored in future studies.

7 Conclusions
Rayleigh quotients are revisited in the context of dissipative

systems. The study of their stationarity properties leads to the
following conclusions.

1. In the case of a proportionally damped viscous system, the
three Rayleigh quotients associated with the damped system
are stationary.

2. In the case of a nonproportionally damped system, the Ray-
leigh quotient involving mass and stiffness matrix is station-
ary while the remaining two involving damping matrix are
not. Stationarity in this case is subject to the diagonal domi-
nance of the modal damping matrix. For an arbitrarily cho-
sen viscous damping matrix, the stationarity property does
not hold true. However, this negative conclusion is to be
balanced by the wide variety of practical engineering struc-
tures where the modal damping is diagonally dominant; con-
sequently, Rayleigh quotients are stationary.

3. In the case of a nonviscously damped system, the Rayleigh
quotient involving mass and stiffness matrix is still station-
ary while the remaining two involving the frequency depen-
dent damping matrix are not. Stationarity in this case is sub-
ject to �a� the diagonal dominance of the absolute value of
the frequency dependent complex modal damping matrix,
and �b� light nonviscous damping. For an arbitrarily chosen
nonviscous damping function, the stationarity property does
not hold true.
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A Finite-Deformation Shell
Theory for Carbon Nanotubes
Based on the Interatomic
Potential—Part I: Basic Theory
A finite-deformation shell theory for carbon nanotubes (CNTs) is established directly from
the interatomic potential for carbon to account for the effect of bending and curvature. Its
constitutive relation accounts for the nonlinear multibody atomistic interactions and
therefore can model the important effect of CNT chirality and radius. The equilibrium
equations and boundary conditions are obtained for the symmetric stresses and bending
moments, which are different from many existing shell theories that involve asymmetric
stress and bending moments. The theory is used in Part II of this paper to study the
instability of carbon nanotubes subjected to different loadings.
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1 Introduction
A single-wall carbon nanotube �CNT� is a cylinder of a single

layer of carbon atoms. Its diameter is on the order of 1 nm, and its
length may reach 100 �m or longer. It displays superior mechani-
cal properties �1–3�, such as yield strain more than 4% �4� and
Young’s modulus on the order of 1 TPa reported in experiments
�5–8� and atomistic studies �4,9–22�.

There exist continuum theories for CNTs based on the inter-
atomic potential for carbon. Arroyo and Belytschko �23�, Zhang et
al. �24,25�, and Yang and E �26� used a modified Cauchy–Born
rule �27,28� to incorporate the interatomic potential into a con-
tinuum framework. Arroyo and Belytschko �23� accounted for the
effect of CNT curvature via an exponential mapping and studied
CNTs under various loadings. Zhang et al. �24� obtained the CNT
elastic modulus and tensile stress-strain curve and found good
agreements with molecular dynamics simulations. Zhang et al.
�25� studied the instability of CNT under tension and determined
the critical strain for defect nucleation. Yang and E �26� studied
the higher-order, local, and exponential Cauchy–Born rules for
CNTs and used the local Cauchy–Born rule to account for some
effects of CNT curvature via the Laplacian of displacement.

The continuum theory based on the interatomic potential
�24,25�, however, is a membrane theory that does not account for
the effect of bending stiffness. It is therefore not applicable to
CNTs subject to bending nor to the instability analysis of CNTs
under compression or torsion because the critical buckling loads
are governed by the bending stiffness.

The purpose of this paper is to establish a shell theory directly
from the interatomic potential and the CNT atomic structure to
account for the nonlinear multibody atomistic interactions. It is a
finite-deformation shell theory for CNTs since CNTs may undergo
large deformation and rotation. The paper consists of two parts:
the basic theory in Part I and the instability analyses for CNT
subject to tension, compression, external or internal pressure, and
torsion in Part II. Part I of this paper is outlined as follows. Based

on the Brenner potential for carbon �29� and its second-generation
potential �30� summarized in the Appendix A, Wu et al. �31� es-
tablished the constitutive model for CNTs to account for the effect
of bending and curvature. The constitutive model is briefly sum-
marized in Sec. 2. The equilibrium equations for this finite-
deformation shell theory based on the interatomic potential are
given in Sec. 3. They involve the symmetric stresses and bending
moments only and are therefore different from the commonly used
shell theories involving nonsymmetric quantities. Some examples
illustrating the finite-deformation shell theory based on the inter-
atomic potential are given in Sec. 4.

2 Constitutive Model for the Finite-Deformation Shell
Theory Based on the Interatomic Potential

Wu et al. �31� established the constitutive model for CNTs
based on the Brenner potential for carbon �29� or its second-
generation potential �30�. The constitutive model accounts for the
effect of bending and curvature and is summarized in this section.

2.1 Strains and Curvatures. Let P�� ,Z� denote a point on
the CNT of radius R prior to deformation �Fig. 1�, where � and Z
are the cylindrical coordinates. A nearby point P+�P with the
coordinates �+�� and Z+�Z can be expanded in the Taylor series
with respect to P as

�P = ��� −
1

6
����3�Re� + �ZeZ −

R

2
����2eR �2.1�

where the terms on the order of ����4 and ��Z�4 or higher are
neglected, and eR ,e� and eZ are the unit vectors in the cylindrical
coordinates. The length of �P is given by

��P�2 = R2����2 + ��Z�2 −
R2

12
����4 �2.2�

The angle � between the two vectors �P�1� and �P�2� is obtained
from cos �= ��P�1� ·�P�2�� / ���P�1����P�2���, where

�P�1� · �P�2� = R2���1����2� + �Z�1��Z�2� − 1
12R2���1����2�

��2����2��2 + 2����1��2 − 3���1����2�� �2.3�
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The point P�� ,Z� moves to p�� ,Z�=P�� ,Z�+U�� ,Z� after the
deformation �Fig. 1�, where U�� ,Z� is the displacement vector.
Similarly P+�P moves to p+�p. The base vectors for the de-
formed CNT are

a� =
1

R

�p

��
= e� +

1

R

�U

��
, aZ =

�p

�Z
= eZ +

�U

�Z
�2.4�

The unit normal of the deformed CNT is n= �a��aZ� / ��a��aZ��.
The deformed CNT has the coefficients of first fundamental

form

a�� = a� · a� ��,� = �,Z� �2.5�
and second fundamental form

b�� = n ·
1

R2

�2p

��2 , bZZ = n ·
�2p

�Z2 , b�Z = n ·
1

R

�2p

�� � Z
�2.6�

The length of �p, which is needed in the interatomic potential in
Appendix A, is given by

��p�2 = a�������� − 1
12�b���������2 �2.7�

where ���=R�� and ��Z=�Z. The angle � between vectors
�p�1� and �p�2� becomes cos �= ��p�1� ·�p�2�� / ���p�1����p�2���,
and

�p�1� · �p�2� = a�����1�
� ���2�

� −
1

12
b��b	
���1�

� ���2�

 �2���2�

� ���2�
	

+ 2���1�
� ���1�

	 − 3���1�
� ���2�

	 � �2.8�

The components of the Green strain tensor E are half of the
difference between a�� and their counterpart ��� �Kronecker
delta� for the underformed CNT, i.e.,

E�� = 1
2 �a�� − 1�, EZZ = 1

2 �aZZ − 1�, E�Z = EZ� = 1
2a�Z

�2.9�

The components of the curvature tensor K are the difference be-
tween b�� and their counterpart for the undeformed CNT, i.e.,

K�� = b�� +
1

R
, KZZ = bZZ, K�Z = KZ� = b�Z �2.10�

2.2 Strain Energy Density. The Cauchy–Born rule �32�
equates the continuum strain energy to the energy in atomic bonds
and ensures the equilibrium of atoms for a simple Bravais lattice
�27,28�. A CNT, however, is a Bravais multilattice whose hexago-

nal lattice structure can be decomposed to two triangular sublat-
tices as marked by the open and solid circles in Fig. 2�a�. Each
sublattice is a simple Bravais lattice and follows the Cauchy–Born
rule. The two sublattices, however, may undergo a shift defined by
vector �, as shown in Fig. 2�b�. The shift vector � is the same for
all atoms between the two sublattices and is to be determined in
order to minimize energy and therefore reach equilibrium of at-
oms �23–25�. The vector �P between the two atoms from differ-
ent sublattices has the coordinates R�� and �Z on the under-
formed CNT. After deformation �P becomes �p on the deformed
CNT and has the new coordinates

R��̄ = R�� + ��, �Z̄ = �Z + �Z �2.11�

The bond length and angle can then be obtained from Eqs. �2.7�
and �2.8� by replacing R�� and �Z with R��̄ and �Z̄, respec-
tively, i.e.,

��p�2 = a����̄���̄� − 1
12�b����̄���̄��2 �2.12�

cos � =
�p�1� · �p�2�

��p�1����p�2��
, and

�p�1� · �p�2� = a����̄�1�
� ��̄�2�

� − 1
12b��b	
��̄�1�

� ��̄�2�

 �2��̄�2�

� ��̄�2�
	

+ 2��̄�1�
� ��̄�1�

	 − 3��̄�1�
� ��̄�2�

	 � �2.13�

where ��̄�=R��̄ and ��̄Z=�Z̄.
The bond length and angle now depend on the Green strain,

curvature, and shift vector,

Fig. 1 A schematic of „a… initial undeformed configuration and
„b… deformed configuration of carbon nanotubes

Fig. 2 „a… The decomposition of a hexagonal lattice to two tri-
angular sublattices. „b… A shift vector � between the two sub-
lattices to ensure the equilibrium of atoms.
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rij = rij�E,K,��, �ijk = �ijk�E,K,�� �2.14�

and so does the bond energy V=V�rij ; �ijk ,k� i , j� in Appendix
A. The strain energy density W is obtained from the sum of energy
in three bonds for each atom via the modified Born rule �24,25�

W�E,K,�� =
1

2

�
1j3

V�rij;�ijk,k � i, j�

S0
�2.15�

where the factor 1/2 results from the equal partition of bond en-
ergy between atoms, and S0=R		d�dZ is the average area per
atom. The shift vector �=��E ,K� is determined in term of the
Green strain E and curvature K by minimizing W,

�W

���

=
�W

��Z
= 0 �2.16�

2.3 Stresses and Bending Moments. The second Piola–
Kirchhoff stress T is the work conjugate of the Green strain E,

T =
DW

DE
=

�W

�E
+

�W

��
·
��

�E
=

�W

�E
�2.17�

where �W /��=0 in Eq. �2.16� has been used, and T has the con-
travariant components. However, for the cylindrical coordinates of
the underformed CNT, the contravariant and covariant compo-
nents become the same such that T can be written as T=T��e�e�

+TZZeZeZ+T�Z�e�eZ+eZe�� and is symmetric. The bending mo-
ment tensor is the work conjugate of the curvature K,

M =
DW

DK
=

�W

�K
+

�W

��
·
��

�K
=

�W

�K
�2.18�

which can be expressed as M=M��e�e�+MZZeZeZ+M�Z�e�eZ

+eZe�� and is also symmetric. The symmetric stresses and bending
moments are different from those in many existing shell theories
that involve asymmetric stress and bending moments and even
assume the constitutive relations for the asymmetric parts. How-
ever, the symmetric stress and bending moment tensors are con-
sistent with the finite-deformation shell theories of Sanders �33�,
Koiter �34�, and Niordson �35�.

The increments of stress Ṫ and bending moment Ṁ are related

to the increments of strain Ė and curvature K̇ by

Ṫ = L:Ė + H:K̇, Ṁ = HT:Ė + S:K̇ �2.19�

where L=LT and S=ST are the symmetric tensile and bending
rigidity tensors given by

L =
D

DE

 �W

�E
� =

�2W

�E � E
−

�2W

�E � �
· 
 �2W

�� � �
�−1

·
�2W

�� � E

S =
D

DK

 �W

�K
� =

�2W

�K � K
−

�2W

�K � �
· 
 �2W

�� � �
�−1

·
�2W

�� � K

�2.20�

and H and HT are the coupled tensile/bending rigidity tensors
given by

H =
D

DK

 �W

�E
� =

�2W

�E � K
−

�2W

�E � �
· 
 �2W

�� � �
�−1

·
�2W

�� � K

HT =
D

DE

 �W

�K
� =

�2W

�K � E
−

�2W

�K � �
· 
 �2W

�� � �
�−1

·
�2W

�� � E

�2.21�

3 Equilibrium Equations for the Symmetric Stress
and Bending Moment

The Cauchy stress tensor t, defined for the deformed configu-
ration, is related to the second Piola–Kirchhoff stress T by

t =
1

J
F̊ · T · F̊T �3.1�

where

F̊ = a�e� + aZeZ �3.2�

is the deformation gradient tensor, which maps an infinitesimal

element dP=Rd�e�+dZeZ of the undeformed CNT to dp= F̊ ·dP
=Rd�a�+dZaZ of the deformed CNT, a� and aZ are the base vec-

tors for the deformed CNT given in Eq. �2.4�, F̊T=e�a�+eZaZ and
J=�a��aZZ− �a�Z�2 in Eq. �3.1� are the transpose and Jacobian of

F̊, respectively. The Cauchy stress is then obtained from Eqs.
�3.1� and �3.2� as t= 1 / J �T��a�a�+TZZaZaZ+T�Z�a�aZ+aZa���,
which has the same components T�� as the second Piola–
Kirchhoff stress �except the factor 1 /J� but different base vectors.

Similarly, the bending moment tensor m for the deformed con-
figuration is

m =
1

J
F̊ · M · F̊T �3.3�

which gives m=1 /J�M��a�a�+MZZaZaZ+M�Z�a�aZ+aZa���, and
has the same components as the bending moment tensor M �ex-
cept the factor 1 /J� but different base vectors. The relations
among t, m, and asymmetric stress and moment tensors in most
shell theories are discussed in the Appendix B.

The equilibrium equations in the finite-deformation shell theory
can be written in terms of t and m as �33–35�

t;�
�� + 2b·�

� m;

�
 + b·
;�

� m
� + X� = 0 �� = �,Z� �3.4�

b��t�� + b��b·

� m�
 − m;�


�
 + Xn = 0 �3.5�

where “;” are the covariant derivatives given in Appendix B; X�

and Xn are the effective in-surface and out-of-surface area forces
�applied force per unit area�, respectively, n is the unit normal of
the deformed CNT surface; t�� are the contravariant components
of t and are proportional to the �contravariant� components of T,
t��=T�� /J, tZZ=TZZ /J, and t�Z= tZ�=T�Z /J; similarly the contra-
variant components of m are m��=M�� /J, mZZ=MZZ /J, and m�Z

=mZ�=M�Z /J; b��, defined in Eq. �2.6�, are related to the curva-
tures via Eq. �2.10�, b·�

� = �a−1��
b
�, and �a−1��
 is the inverse of
a�
.

The traction boundary conditions are �35�

�t�� + 2b·

� m
���� = t̄� + b·


� m̄
 �� = �,Z� �3.6�

m;�
���� +

�

�s
�m����s�� = − t̄n +

�m̄T

�s
�3.7�

m������ = m̄B �3.8�

where s is the unit vector along the boundary, �=s�n is the
in-surface unit normal, t̄� and t̄n are the prescribed effective in-
surface and out-of-surface tractions, and the prescribed moment
on the boundary is m= m̄Ts+ m̄B� with m̄B and m̄T being the pre-
scribed bending moment and torque, respectively.

The incremental equilibrium equations, which are needed in the
instability analysis in Part II of this paper, are

d

dt
�t;�

��� + 2
d

dt
�b·�

� m;

�
� +

d

dt
�b·
;�

� m
�� +
dX�

dt
= 0 �� = �,Z�

�3.9�
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d

dt
�b��t��� +

d

dt
�b��b·


� m�
� −
d

dt
�m;
�

�
 � +
dXn

dt
= 0 �3.10�

4 Analytical Solutions
We present the analytical solutions for a CNT of radius R sub-

ject to axial strain �axial, lateral strain �lateral �circumferential di-
rection�, and twist � �rotation per unit length�. Such solutions
pave the way for the instability analysis in Part II of this paper.

The deformed CNT remains to have circular cross section under
such loadings. A point P=ReR+ZeZ prior to deformation moves to
p=R�1+�lateral��eR cos �Z+e� sin �Z�+Z�1+�axial�eZ. The base
vectors for the deformed configuration are

a� =
1

R

�p

��
= �1 + �lateral��− eR sin �Z + e� cos �Z�

aZ =
�p

�Z
= �R�1 + �lateral��− eR sin �Z + e� cos �Z� + �1 + �axial�eZ

�4.1�
The coefficients of first and second fundamental forms are

a�� = �1 + �lateral�2, aZZ = �2R2�1 + �lateral�2 + �1 + �axial�2,

a�Z = �R�1 + �lateral�2, b�� = −
1 + �lateral

R
,

bZZ = − �2R�1 + �lateral�, b�Z = − ��1 + �lateral� �4.2�
The deformation gradient becomes

F̊ = �1 + �lateral��− eRe� sin �Z + e�e� cos �Z� + �R�1 + �lateral�

��− eReZ sin �Z + e�eZ cos �Z� + �1 + �axial�eZeZ �4.3�

which gives the Jacobian J= �1+�lateral��1+�axial�. The compo-
nents of the Green strain are

E�� = �lateral +
1

2
�lateral

2

EZZ = �axial +
1

2
�axial

2 +
1

2
�2R2�1 + �lateral�2

E�Z =
1

2
�R�1 + �lateral�2 �4.4�

The components of the curvature tensor are

K�� = −
�lateral

R
, KZZ = − �2R�1 + �lateral�, K�Z = − ��1 + �lateral�

�4.5�

The second Piola–Kirchhoff stress T and bending moment M
are obtained from Eqs. �2.17� and �2.18�, respectively. The
Cauchy stress t and bending moment m are then obtained from
Eqs. �3.1� and �3.3�. The in-surface equilibrium Eq. �3.4� are sat-
isfied automatically, while the out-of-surface equilibrium Eq. �3.5�
gives the lateral pressure �out-of-surface area force� Xn

=−b��t��−b��b·

� m�
. The boundary conditions in Eqs.

�3.6�–�3.8� give the stress and bending moment tractions at the
end of the CNT as

t̄� −
m̄�

�1 + �lateral�R
=

T�Z + �RTZZ

1 + �lateral
−

2M�Z + 2�RMZZ

�1 + �lateral�2R
�4.6�

t̄Z =
TZZ

1 + �lateral
�4.7�

t̄n = 0 �4.8�

m̄B =
1

�1 + �lateral��1 + �axial�
MZZ �4.9�

These give the net force and torque of the CNT as 2�R�1
+�lateral��1+�axial�t̄Z and 2�R2�1+�lateral�3�t̄�− �1+�lateral�−1R−1

�m̄��, respectively.

5 Concluding Remarks and Discussion
A finite-deformation shell theory for CNTs is established di-

rectly from the interatomic potential for carbon in this paper. Its
constitutive relation accounts for the nonlinear multibody atomis-
tic interactions and therefore can model the important effect of
CNT chirality and radius. The equilibrium equations and bound-
ary conditions are established for the symmetric stresses and
bending moments, which are different from many existing shell
theories that involve asymmetric stress and bending moments. An
analytical solution is given for the CNT subjected to the axial
strain, lateral strain, and twist.

The theory accounts for the effect of finite deformation for the
following reasons:

�i� many CNTs undergo large rotation and deformation in
their applications;

�ii� finite deformation is important in the instability analysis of
CNTs, as to be studied in Part II of this paper.

The present shell theory is different from the prior shell theories
for CNTs in that it is directly based on the interatomic potential
and does not require any fitting of Young’s modulus and CNT
thickness. For a single-wall CNT subjected to small deformation,
the moment of inertia I is �R3h, and the area A is 2�Rh, where R
is the CNT radius and h is the wall thickness. The bending stiff-
ness ECNTI and tension stiffness ECNTA become ECNTh ·�R3 and
ECNTh ·2�R, respectively, where CNT Young’s modulus ECNT and
thickness h appear together via their product ECNTh. Huang et al.
�36� showed that it is unnecessary to define CNT Young’s modu-
lus and thickness separately since all experimentally measurable
or theoretically calculable properties involve ECNTh, not ECNT nor
h separately. The prior studies of CNT Young’s modulus and
thickness can be grouped to two types: one takes the interlayer
spacing of graphite 0.34 nm as the thickness, and the resulting
Young modulus is around 1 TPa �13,37–39�; the other is based on
bending stiffness of graphene and continuum shell modeling,
which gives the thickness around 0.066 nm and Young’s modulus
of 5.5 TPa �4,40–44�. These two types give approximately the
same ECNTh, 0.34 TPa nm for the first group and 0.36 TPa nm
for the second group. As shown in this paper for CNTS as well as
by Wu et al. �31� for graphene, the bending stiffness and tension
stiffness can be directly obtained from the interatomic potential.
This avoids the ambiguous definition of CNT Young’s modulus
and thickness.
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Appendix A: Interatomic Potentials for Carbon
Brenner �29� established an interatomic potential for carbon

from the Tersoff �45� formalism as
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V = VR�rij� − BijVA�rij� �A1�

for atoms i and j, where rij is the distance between atoms i and j,
VR and VA are the repulsive and attractive pair terms �i.e., depend-
ing only on rij� given by

VR�r� =
D�e�

S − 1
e−�2S��r−R�e��fc�r� �A2�

VA�r� =
D�e�S

S − 1
e−�2/S��r−R�e��fc�r� �A3�

where the constants D�e�, S, �, and R�e� can be found in Brenner
�29�; the function fc is merely a smooth cutoff function given by

fc�r� = 
1, r � R�1�

1

2
�1 + cos���r − R�1��

R�2� − R�1� ��, R�1�  r  R�2�

0, r � R�2�
�

�A4�

where R�2�=0.2 nm and R�1�=0.17 nm to include only the first-
neighbor atoms for carbon.

The bond order function Bij in Eq. �A1� represents a multibody
coupling of atoms i and j and the local environment and is given
by

Bij = �1 + �
k��i,j�

G��ijk�fc�rik��−�
�A5�

where k represents the atoms other than i and j, rik is the distance
between the atoms i and k, fc is the cutoff function in Eq. �A4�,
�ijk is the angle between bonds i-j and i-k, the function G is given
by

G��� = a0�1 +
c0

2

d0
2 −

c0
2

d0
2 + �1 + cos ��2� �A6�

and a0, c0, and d0 are the constants given in Brenner �29�. For
atoms i and j having different local environments, the coefficient
Bij in Eq. �A5� is replaced by

B̄ij = 1/2�Bij + Bji� �A7�
The second-generation potential for carbon �30� takes the same

form of Eq. �A1� but the repulsive and attractive pair terms in Eqs.
�A2� and �A3� become

VR�r� = 
1 +
Q

r
�Ae−�rfc�r� �A8�

VA�r� = �
1n3

Bne−�nrfc�r� �A9�

where the constants Q, A, �, Bn, and �n�n=1,2 ,3� can be found
in Brenner et al. �30�; the function fc is the same cutoff function in
Eq. �A4�. The bond order function Bij in Eq. �A1� becomes

Bij =
1

2
�Bij

�−� + Bji
�−�� + �ij

RC + Bij
DH �A10�

where �ij
RC and Bij

DH are the tricubic splines given in Brenner et al.
�30�.

Bij
�−� = �1 + �

k��i,j�
fc�rik�G��ijk��−1/2

�A11�

and G is a six-order polynomial spline given in Brenner et al.
�30�.

Appendix B: The Symmetric Stress and Bending Mo-
ment, and Covariant Derivatives

B.1 Symmetric Versus Asymmetric Stresses and Bend-
ing Moments

The asymmetric stress tensor tasym and bending moment masym
in existing shell theories satisfy the three force equilibrium equa-
tions and the three moment equilibrium equations:

tasym ;�
�� − b·�

� tasym
n� + X� = 0 �� = �,Z� �B1�

tasym ;�
n� + b
�tasym


� + Xn = 0 �B2�

masym ;�
�� + tasym

n� + M� = 0 �� = �,Z� �B3�

c���tasym
�� + b·	

� masym
�	 � = 0 �B4�

where c��=Je�� and e�� is the two-dimensional permutation ten-
sor �e11=e22=0, e12=−e21=1�. The substitution of out-of-surface
shear stress tasym

n� in Eq. �B3� into Eqs. �B1� and �B2� yields three
equilibrium equations �3.4� and �3.5�. The symmetric bending mo-
ment m in Eqs. �3.4� and �3.5� is the symmetric part of the above
asymmetric bending moment masym,

m = 1/2�masym + masym
T � �B5�

The symmetric stress is given by

t = t̊asym − b · masym
T = t̊asym

T − masym · b = tT �B6�

which is symmetric due to Eq. �B4�, where t̊asym is the in-surface
part of the tasym.

B.2 The Covariant Derivatives
The covariant derivatives of vector and tensor are

S;

� =

�S�

��
 + S�	�

� �B7�

S·�;

� =

�S·�
�

��
 + S·�
� 	�


� − S·�
� 	�


� �B8�

S;

�� =

�S��

��
 + S��	�

� + S��	�


� �B9�

where 	�

� is the Christoffel symbol for the deformed CNT.
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A Finite-Deformation Shell
Theory for Carbon Nanotubes
Based on the Interatomic
Potential—Part II: Instability
Analysis
Based on the finite-deformation shell theory for carbon nanotubes established from the
interatomic potential in Part I of this paper, we have studied the instability of carbon
nanotubes subjected to different loadings (tension, compression, internal and external
pressures, and torsion). Similar to the conventional shells, carbon nanotubes may un-
dergo bifurcation under compression/torsion/external pressure. Our analysis, however,
shows that carbon nanotubes may also undergo bifurcation in tension and internal pres-
sure, though the bifurcation modes for tension and compression are very different, and so
are the modes for the internal and external pressures. The critical load for instability and
bifurcation depends on the interatomic potential used. �DOI: 10.1115/1.2965367�

Keywords: shell theory, carbon nanotube, interatomic potential, finite deformation,
instability

1 Introduction
There exist many atomistic studies of carbon nanotubes �CNTs�

subject to tension, compression, and torsion �1–5�. As a CNT
deforms, instability in the form of bifurcation occurs such that
there may exist multiple equilibrium configurations under the
same loading. The instability usually triggers the defect nucleation
in the CNT and the eventual failure of the CNT.

The atomistic studies show that the bifurcation mode of CNT
under compression �1� may be different from the Euler beam
buckling �6�, particularly for relatively short CNTs. This suggests
that, if a CNT is to be modeled as a continuum structure element,
it should be considered as a shell rather than a beam. A finite-
deformation shell theory for CNTs is established in Part I of this
paper based on the interatomic potentials �7,8� to account for the
nonlinear and multibody atomistic interactions, as well as the
CNT atomic structure �e.g., chirality�. The shell theory also ac-
counts for the finite deformation of CNTs, which is important in
the instability or bifurcation analyses. In Part II of this paper, we
use the finite-deformation shell theory to study the instability of
CNTs subjected to tension, compression, internal and external
pressures, and torsion.

The initial configuration of the CNT prior to any deformation is
determined via the energy minimization �9�. For the CNT sub-
jected to tension/compression, internal and external pressures, and
torsion, the deformation prior to instability is uniform and is ob-
tained analytical in Part I of this paper. The effect of finite tem-
perature is not accounted for in the present study.

2 Instability of Carbon Nanotubes in Tension

2.1 Prebifurcation: Uniform Deformation. For an armchair
or zigzag CNT of radius R subjected to simple tension, the defor-
mation is uniform and axisymmetric prior to bifurcation. A mate-

rial point P=ReR+ZeZ on the CNT prior to deformation moves to
p=R�1+�lateral�eR+Z�1+�axial�eZ after the deformation, where
�axial is the axial strain, and the strain in circumferential direction
�lateral is to be determined.

The base vectors on the deformed CNT are

a� =
1

R

�p

��
= �1 + �lateral�e�, aZ =

�p

�Z
= �1 + �axial�eZ �2.1�

which give the nonvanishing components of the Green strain and
curvature tensors as

E�� = �lateral +
1

2
�lateral

2 , EZZ = �axial +
1

2
�axial

2 , K�� = −
�lateral

R

�2.2�

The strain energy density W=W�E�� ,EZZ ,K��� is obtained from
the modified Born rule �Eq. �2.15� in Part I of this paper�. It gives
the nonvanishing components of second Piola–Kirchhoff stress
and bending moment tensors:

T�� =
�W

�E��

, TZZ =
�W

�EZZ
, M�� =

�W

�K��

, MZZ =
�W

�KZZ

�2.3�

The equilibrium equations become

T�� −
M��

R�1 + �lateral�
= 0 �2.4�

which determines the strain �lateral in the circumferential direction
in terms of the axial strain �axial, i.e., �lateral=�lateral��axial�.

2.2 Onset of Bifurcation: Nonuniform Increment of
Deformation. The deformation is still uniform at the onset of

bifurcation, but its increment �rate� is not. Let v= U̇ denote the
velocity with the components vR, v�, and �Z. For a CNT of length
L subjected to the axial force but no shear at two ends Z=0 and L,
the velocity at the onset of bifurcation satisfies �3�
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vZ =
�v�

�Z
=

�vR

�Z
= 0 at Z = 0,L �2.5�

We first consider the axisymmetric bifurcation. The axisymmet-
ric velocity field in the CNT, satisfying the incremental equilib-
rium equations �Eqs. �3.9� and �3.10� in Part I of this paper� and
boundary condition �Eq. �2.5��, is given by

v� = 0, vZ = VZ0 sin
m�Z

L
, vR = VR0 cos

m�Z

L
�2.6�

where m=1,2 ,3 , . . . is the eigenmode number, and �VZ0 ,VR0� is
the corresponding eigenvector satisfying the following homoge-
neous algebraic equation:

�QZZ QZR

QRZ QRR
��VZ0

VR0
� = 0 �2.7�

Here the coefficients are given in terms of the incremental tensile,
bending, and coupled tensile/bending rigidity tensors L, S, and H
�Eqs. �2.20� and �2.21� in Part I of this paper� and the stress and
bending moment tensors T and M by

QZZ = − �LZZZZ +
TZZ

�1 + �axial�2��m�

L
�2

QZR = QRZ = −
1 + �lateral

R
�LZZ�� −

HZZ��

R�1 + �lateral�
�m�

L

+ �HZZZZ +
MZZ

�1 + �axial�2��m�

L
�3

QRR = −
�1 + �lateral�2

R2 �L���� −
2H����

R�1 + �lateral�
+

S����

R2�1 + �lateral�2

+
M��

R�1 + �lateral�3� + �2�1 + �lateral�
R

H��ZZ −
2

R2S��ZZ − TZZ

−
1 + �lateral

R�1 + �axial�2 M����m�

L
�2

− SZZZZ�m�

L
�4

�2.8�

In order to have a nontrivial solution, the determinant of the 2
�2 matrix in Eq. �2.7� must vanish, which gives the critical con-
dition for the axisymmetric bifurcation as

	QZZ QZR

QRZ QRR
	 = 0 �2.9�

The first axial strain �axial that satisfies the above equation is the
critical strain for bifurcation in tension and is denoted by �cr

tension.
Figure 1 shows �cr

tension based on the Brenner potential �7� versus
mR /L for an �8,8� armchair CNT, where m�=1,2 ,3 , ...� is the
eigenmode number, and R and L are the CNT radius and length,
respectively. The critical strain for axisymmetric bifurcation is
essentially a constant of 0.356, independent of the CNT length L.
This critical strain is identical to the one given by the membrane
theory of CNT �3� based on the same interatomic potential �7�.
The same bifurcation strain given by the membrane theory �3� and
present shell theory suggests that the CNT bending rigidity has
essentially no effect on the bifurcation in tension.

For nonaxisymmetric bifurcation, the velocity field in the CNT,
satisfying the incremental equilibrium equations �Eqs. �3.9� and
�3.10� in Part I of this paper� and boundary condition �Eq. �2.5��,
is given by

v� = V�0 sin n� cos
m�Z

L
, vZ = VZ0 cos n� sin

m�Z

L
,

vR = VR0 cos n� cos
m�Z

L
�2.10�

where n=1,2 ,3 , ..., n=0 degenerates to the axisymmetric bifurca-
tion �Eq. �2.6��, and the eigenvector �V�0 ,VZ0 ,VR0� satisfies a set
of homogeneous algebraic equations. The vanishing of the deter-
minant of the coefficient matrix gives the condition for nonaxi-
symmetric bifurcation. Figure 1 shows the critical strain �cr

tension

for nonaxisymmetric bifurcation �n=1,2 ,3 , ...� of the �8,8� arm-
chair CNT in tension. The critical strain is always larger than its
axisymmetric counterpart �n=0� such that only axisymmetric bi-
furcation occurs in the �8,8� armchair CNT �when the tensile axial
strain reaches 0.356�.

The above observation, however, depends on the interatomic
potential. Figure 2 shows the critical strain �cr

tension for bifurcation
in tension based on the second-generation potential �8�. The criti-
cal strain for axisymmetric bifurcation �n=0� is approximately a

Fig. 1 The critical strain for bifurcation in tension based on
the Brenner potential †7‡ versus mR /L for the „8,8… armchair
carbon nanotube, where m„=1,2,3, ...… is the bifurcation mode
number, R and L are the radius and length of the carbon nano-
tube, respectively, n=0 represents the axisymmetric bifurca-
tion, and n=1,2,3, ... represents the nonaxisymmetric
bifurcation

Fig. 2 The critical strain for bifurcation in tension based on
the second-generation interatomic potential †8‡ versus mR /L
for the „8,8… armchair carbon nanotube, where m„=1,2,3, ...… is
the bifurcation mode number, R and L are the radius and length
of the carbon nanotube, respectively, n=0 represents the axi-
symmetric bifurcation, and n=1,2,3, ... represents the nonaxi-
symmetric bifurcation
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constant of 0.299 and is smaller than 0.356 in Fig. 1 based on the
Brenner potential �7�. Furthermore, the critical strain for nonaxi-
symmetric bifurcation �n=1,2 ,3 , ...� is smaller than the axisym-
metric bifurcation strain �n=0� such that the nonaxisymmetric bi-
furcation occurs, which is contrary to the results in Fig. 1 based on
the Brenner potential �7�. This opposite behavior results from the
different expressions and parameters used in the Brenner potential
�7� and its second-generation potential �8�. This is partially be-
cause the parameters in interatomic potentials are determined by
fitting the binding energy, lattice constants, elastic properties, and
vacancy formation energy of diamond and graphite, which are
mainly properties at the vanishing strain level and therefore not
accounting for the behavior at the finite strain �e.g., around 30%
strain�.

Figure 3 shows the critical strain for bifurcation in tension
based on the Brenner potential �7� for the �8,8�, �12,12�, and
�16,16� armchair CNTs and the �14,0�, �21,0�, and �28,0� zigzag
CNTs. The CNT radius has essentially no effect on the critical
strain for bifurcation in tension since the curves for armchair
CNTs are almost identical and so are the ones for zigzag CNTs.
The CNT chirality, however, contributes to the bifurcation in ten-
sion. For example, the �8,8� armchair and �14,0� zigzag CNTs
have approximately the same radius, but the critical strain for the
�14,0� zigzag CNT is lower than that for the �8,8� armchair CNT.

3 Instability of Carbon Nanotubes in Compression
Even though the membrane theory and shell theory for CNTs

give the same critical strain for bifurcation in tension in Sec. 2.2,
the membrane theory is not applicable to instability of CNTs in
compression since it does not have bending rigidity. We use the
finite-deformation shell theory established in Part I of this paper to
study the instability of CNTs in compression. The deformation is
uniform prior to bifurcation and is the same as that in Sec. 2.1
except for the axial strain �axial�0. Once the compressive strain
reaches a critical value, −�cr

compression, bifurcation occurs. In the
following, �cr

compression is called the buckling strain.
The onset of bifurcation is governed by the analysis in Sec. 2.2,

except that �axial�0. Figure 4 shows the buckling strain
�cr

compression based on the Brenner potential �7� versus L /mR for the
�8,8� armchair CNT in compression, where m�=1,2 ,3 , ...� is the
eigenmode number, and L and R are the CNT length and radius,
respectively. Both the axisymmetric �n=0� and nonaxisymmetric
bifurcations �n=1,2 ,3 , ...� are considered, where the velocity field
for n=1 is identical to that for the Euler beam buckling. For long

CNTs L / �mR��6.9, n=1 �Euler beam buckling� gives the small-
est buckling strain �cr

compression. For relatively short CNTs L / �mR�
�6.9, n=2 gives the smallest �cr

compression. The axisymmetric bifur-
cation �n=0� never occurs in compression.

Figure 5 shows the buckling strain �cr
compression based on the

second-generation interatomic potential �8� for the �8,8� armchair
CNT in compression. The curves look similar to those in Fig. 4,
but they give smaller buckling strain. The difference once again
results from the different functions and parameters in the second-
generation interatomic potential �8� and the Brenner potential �7�.

Figure 6 shows the buckling strain based on the Brenner poten-
tial �7� for the �8,8�, �12,12�, and �16,16� armchair CNTs in com-
pression. For long CNTs �large L / �mR��, all curves coincide and
give the same buckling strain �cr

compression corresponding to the Eu-
ler beam buckling n=1. For relatively short CNTs, other buckling
modes appear, such as n=2 for the �8,8� armchair CNT and n

Fig. 3 The critical strain for bifurcation in tension based on
the Brenner potential †7‡ versus mR /L for several armchair and
zigzag carbon nanotubes, where m„=1,2,3, ...… is the bifurca-
tion mode number, and R and L are the radius and length of the
carbon nanotube, respectively

Fig. 4 The critical strain for bifurcation in compression based
on the Brenner potential †7‡ versus L / „mR… for the „8,8… arm-
chair carbon nanotube, where m„=1,2,3, ...… is the bifurcation
mode number, R and L are the radius and length of the carbon
nanotube, respectively, n=0 represents the axisymmetric bifur-
cation, and n=1,2,3, ... represents the nonaxisymmetric
bifurcation

Fig. 5 The critical strain for bifurcation in compression based
on the second-generation interatomic potential †8‡ versus
L / „mR… for the „8,8… armchair carbon nanotube, where
m„=1,2,3, ...… is the bifurcation mode number, R and L are the
radius and length of the carbon nanotube, respectively, n=0
represents the axisymmetric bifurcation, and n=1,2,3, ... rep-
resents the nonaxisymmetric bifurcation
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=2 and n=3 for the �12,12� and �16,16� armchair CNTs. This
strong dependence on the CNT radius did not occur in tension
bifurcation �Sec. 2�.

Using the molecular dynamics simulations based on the Bren-
ner potential �7�, Yakobson et al. �1� studied the buckling of a
6-nm-long �7,7� armchair CNT under compression. They reported
the buckling strain around 5% for n=2, while the present analysis
gives 6% for the same n. The molecular dynamics simulations
based on the second-generation interatomic potential �8� gave the
buckling strain around 13% for a 4.3-nm-long �8,0� zigzag CNT
under compression �10�, while the present analysis gives 11%.

4 Instability of Carbon Nanotubes Subjected to Inter-
nal Pressure

4.1 Prebifurcation: Uniform Deformation. CNTs subjected
to internal pressure have important applications such as hydrogen
storage. For an armchair or zigzag CNT of radius R subjected to
internal pressure Pint, the deformation is uniform and axisymmet-
ric prior to bifurcation. The analysis in Sec. 2.1 still holds except
that the equilibrium �Eq. �2.4�� becomes

T�� −
M��

R�1 + �lateral�
=

PintR

1 + �lateral
�4.1�

The traction-free condition at the end of CNT gives

TZZ = 0 �4.2�

Equations �4.1� and �4.2� determine the axial strain �axial and the
strain �lateral in the circumferential direction in terms of the inter-
nal pressure Pint.

4.2 Onset of Bifurcation: Nonuniform Increment of
Deformation. Similar to Sec. 2.2, the deformation is still uniform
at the onset of bifurcation, but its increment �rate� is not. The
velocity field in the CNT is given by Eq. �2.10�. The incremental
equilibrium equations �Eqs. �3.9� and �3.10� in Part I of this paper�
then give a homogeneous algebraic equation for �V�0 ,VZ0 ,VR0�,


Q�� Q�Z Q�R

QZ� QZZ QZR

QR� QRZ QRR
�
V�0

VZ0

VR0
� = 0 �4.3�

where, similar to Eq. �2.8�, the coefficients QIJ are given analyti-
cally in terms of the incremental rigidity tensors L, S, and H, and
the stress and bending moment tensors T and M. In order to have

a nontrivial solution, the determinant of the 3�3 matrix in Eq.
�4.3� must vanish, which gives the critical condition for bifurca-
tion of CNTs subjected to internal pressure.

Figure 7 shows the critical internal pressure for bifurcation Pcr
int

based on the Brenner potential �7� versus L /mR for the �8,8�,
�12,12�, and �16,16� armchair CNTs, where m�=1,2 ,3 , ...� is the
eigenmode number, and R and L are the CNT radius and length,
respectively. The bifurcation mode always corresponds to n=1
�the same mode as the Euler beam buckling�. The CNT radius has
little effect on the critical internal pressure for bifurcation since
the curves in Fig. 7 are close. This is similar to the bifurcation in
tension �Sec. 2� since the stress state is also in tension for the CNT
subjected to the internal pressure. The critical internal pressure for
bifurcation Pcr

int decreases monotonically with the increasing CNT
length L. For the CNT length/radius ratio L /R=200, Pcr

int is about
100 MPa.

Figure 8 shows the critical internal pressure for bifurcation Pcr
int

based on the second-generation interatomic potential �8� for the
�8,8�, �12,12�, and �16,16� armchair CNTs. The bifurcation mode

Fig. 6 The critical strain for bifurcation in compression based
on the Brenner potential †7‡ versus L / „mR… for the „8,8…, „12,12…,
and „16,16… armchair carbon nanotubes, where m„=1,2,3, ...… is
the bifurcation mode number, R and L are the radius and length
of the carbon nanotube, respectively, and n=1,2,3, ... repre-
sents the nonaxisymmetric bifurcation

Fig. 7 The critical internal pressure for bifurcation based on
the Brenner potential †7‡ versus L / „mR… for the „8,8…, „12,12…,
and „16,16… armchair carbon nanotubes, where m„=1,2,3, ...… is
the bifurcation mode number, and R and L are the radius and
length of the carbon nanotube, respectively. The bifurcation
corresponds to n=1 „nonaxisymmetric bifurcation….

Fig. 8 The critical internal pressure for bifurcation based on
the second-generation interatomic potential †8‡ versus L / „mR…

for the „8,8…, „12,12…, and „16,16… armchair carbon nanotubes,
where m„=1,2,3, ...… is the bifurcation mode number, and R and
L are the radius and length of the carbon nanotube, respec-
tively. The bifurcation corresponds to n=1 „nonaxisymmetric
bifurcation….
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corresponds to n=1 �the same mode as Euler beam buckling�. The
curves in Fig. 8 are rather similar to those in Fig. 7.

5 Instability of Carbon Nanotubes Subjected to Exter-
nal Pressure

For an armchair or zigzag CNT of radius R subjected to exter-
nal pressure Pext, the deformation is uniform and axisymmetric
prior to bifurcation. The analysis in Sec. 4 still holds except that
the internal pressure Pint is replaced by −Pext. Equation �4.3� also
gives the critical condition for bifurcation of CNTs subjected to
external pressure �if Pint is replaced by −Pext�.

Figure 9 shows the critical external pressure for bifurcation Pcr
ext

based on the Brenner potential �7� versus L /mR for the �8,8� arm-
chair CNT, where m�=1,2 ,3 , ...� is the eigenmode number, and R
and L are the CNT radius and length, respectively. Both the axi-
symmetric �n=0� and nonaxisymmetric bifurcations �n
=1,2 ,3 , ...� are considered. For CNT length L / �mR��3.3, n=2
gives the lowest critical external pressure Pcr

ext. For very short
CNTs L / �mR��3.3, other bifurcation modes �n=3,4 , ...� appear,
but the axisymmetric bifurcation �n=0� or nonaxisymmetric bifur-
cation with n=1 never occur. The bifurcation modes �n
=2,3 ,4 , ...� for the external pressure are completely different from
that for the internal pressure �n=1� in Sec. 4.

Figure 10 shows the critical external pressure for bifurcation
Pcr

ext based on the second-generation interatomic potential �8� for
the �8,8� armchair CNT. The results are somewhat different from
those in Fig. 9 for the Brenner potential �7�, reflecting the differ-
ence between the two interatomic potentials �7,8�.

Figure 11 shows the critical external pressure for bifurcation
Pcr

ext based on the Brenner potential �7� for the �8,8�, �12,12�, and
�16,16� armchair CNTs. Similar to Fig. 9, the bifurcation mode
corresponds to n=2 for long CNTs �large L / �mR�� and to n
=3,4 , ... for shorter CNTs, and never to n=0 �axisymmetric bifur-
cation� and n=1. The critical external pressure for bifurcation
decreases rapidly as the CNT radius increases since Pcr

ext for the
�16,16� armchair CNT is much smaller than that for the �8,8�
armchair CNT.

6 Instability of Carbon Nanotubes in Torsion

6.1 Prebifurcation: Uniform Deformation. For an armchair
or zigzag CNT of radius R subjected to torsion, the deformation is
uniform prior to bifurcation. Let � denote the twist �rotation per

unit length�. The axial strain �axial and the strain in circumferential
direction �lateral result from the finite twist and are to be deter-
mined. A material point P=ReR+ZeZ on the CNT prior to defor-
mation moves to p=R�1+�lateral��eR cos �Z+e� sin �Z�+Z�1
+�axial�eZ after the deformation.

The base vectors on the deformed CNT are

a� =
1

R

�p

��
= �1 + �lateral��− eR sin �Z + e� cos �Z�

aZ =
�p

�Z
= �R�1 + �lateral��− eR sin �Z + e� cos �Z� + �1 + �axial�eZ

�6.1�

They give the components of the Green strain and curvature as

E�� = �lateral +
1

2
�lateral

2

Fig. 9 The critical external pressure for bifurcation based on
the Brenner potential †7‡ versus L / „mR… for the „8,8… armchair
carbon nanotube, where m„=1,2,3, ...… is the bifurcation mode
number, R and L are the radius and length of the carbon nano-
tube, respectively, n=0 represents the axisymmetric bifurca-
tion, and n=1,2,3, ... represents the nonaxisymmetric
bifurcation

Fig. 10 The critical external pressure for bifurcation based on
the second-generation interatomic potential †8‡ versus L / „mR…

for the „8,8… armchair carbon nanotube, where m„=1,2,3, ...… is
the bifurcation mode number, R and L are the radius and length
of the carbon nanotube, respectively, n=0 represents the axi-
symmetric bifurcation, and n=1,2,3, ... represents the nonaxi-
symmetric bifurcation

Fig. 11 The critical external pressure for bifurcation based on
the Brenner potential †7‡ versus L / „mR… for the „8,8…, „12,12…,
and „16,16… armchair carbon nanotubes, where m„=1,2,3, ...… is
the bifurcation mode number, R and L are the radius and length
of the carbon nanotube, respectively, and n=1,2,3, ... repre-
sents the nonaxisymmetric bifurcation
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EZZ = �axial +
1

2
�axial

2 +
1

2
�2R2�1 + �lateral�2

E�Z =
1

2
�R�1 + �lateral�2 �6.2�

K�� = −
�lateral

R
, KZZ = − �2R�1 + �lateral�, K�Z = − ��1 + �lateral�

�6.3�

The strain energy density W=W�E	
 ,K	
� is obtained from the
modified Born rule �Eq. �2.15� in Part I of this paper�. It gives the
components of second Piola–Kirchhoff stress and bending mo-
ment,

T	
 =
�W

�E	


, M	
 =
�W

�K	


�6.4�

The equilibrium equations become

T�� + 2�RT�Z −
M�� + 2�RM�Z + �2R2MZZ

R�1 + �lateral�
= 0 �6.5�

The boundary conditions for pure torsion give

TZZ = 0 �6.6�

Equations �6.5� and �6.6� determine the axial strain �axial and the
strain �lateral in the circumferential direction in terms of the twist
�.

6.2 Onset of Bifurcation: Nonuniform Increment of
Deformation. The deformation is still uniform at the onset of

bifurcation, but its increment �rate� is not. Let v= U̇ denote the
velocity with the components vR, v�, and �Z. The velocity field in
the CNT can be expressed as1

v� = V�0 cos�m�Z

L
− n��, vZ = VZ0 cos�m�Z

L
− n�� ,

vR = VR0 sin�m�Z

L
− n�� �6.7�

where n=0,1 ,2 ,3 , ..., m�=1,2 ,3 , ...� is the eigenmode number, R
and L are the radius and length of the CNT, respectively, and
�V�0 ,VZ0 ,VR0� is the corresponding eigenvector. The substitution
of Eq. �6.7� into the incremental equilibrium equations �Eqs. �3.9�
and �3.10� in Part I of this paper� yields the homogeneous alge-
braic equations for �V�0 ,VZ0 ,VR0�. The vanishing of determinant
of the coefficient matrix gives the condition for bifurcation in
torsion.

Figure 12 shows �crR based on the Brenner potential �7� versus
L /mR for the �8,8�, �12,12�, and �16,16� armchair CNTs, where
�cr is the critical twist for bifurcation, m�=1,2 ,3 , ...� is the eigen-
mode number, and R and L are the CNT radius and length, respec-
tively. For long CNTs �large L / �mR��, the bifurcation mode is
always n=2. The corresponding critical twist for bifurcation �cr
becomes a constant for each CNT, and this constant decreases
rapidly with the increasing CNT radius. For relatively short CNTs,
other bifurcation modes n=3,4 , ... appear, but n=0 and n=1
never occur.

Figure 13 shows the critical twist for bifurcation �crR based on
the second-generation interatomic potential �8�. The curves are

similar to those in Fig. 12. Therefore, the Brenner potential �7�
and its second-generation interatomic potential �8� give noticeable
different critical twists for bifurcation in torsion.

Using the molecular dynamics simulations based on the Bren-
ner potential �7�, Yakobson et al. �1� studied the buckling of a
23-nm-long �13,0� zigzag CNT under torsion. They reported the
critical twist �crR for bifurcation around 0.061 for n=2, while the
present analysis gives 0.048 for the same n.

7 Concluding Remarks
Based on the finite-deformation shell theory for CNTs estab-

lished from the interatomic potential in Part I of this paper, we
have studied the instability of CNTs subjected to different load-
ings �tension, compression, internal and external pressures, and
torsion�. Similar to the conventional shells, CNTs may undergo
bifurcation under compression/torsion/external pressure. Our
analysis, however, shows that CNTs may also undergo bifurcation
in tension and internal pressure, though the bifurcation modes for
tension and compression are very different, and so are the modes
for internal and external pressures.

1The complete expansion of the velocity v� includes the terms sin n� sin m�Z /L,
sin n� cos m�Z /L, cos n� sin m�Z /L, and cos n� cos m�Z /L �n=0,1 ,2 , ...,m
=1,2 ,3 , ...�, which are equivalent to cos�m�Z /L−n��, cos�m�Z /L+n��,
sin�m�Z /L−n��, and sin�m�Z /L+n��. It can be shown that these four terms lead to
the same bifurcation condition as the first one cos�m�Z /L−n�� in v� in Eq. �6.7�.

Fig. 12 The critical twist kcr for bifurcation based on the Bren-
ner potential †7‡ versus L / „mR… for the „8,8…, „12,12…, and „16,16…
armchair carbon nanotubes, where m„=1,2,3, ...… is the bifurca-
tion mode number, R and L are the radius and length of the
carbon nanotube, respectively, and n=1,2,3, ... represents the
nonaxisymmetric bifurcation

Fig. 13 The critical twist kcr for bifurcation based on the
second-generation interatomic potential †8‡ versus L / „mR… for
the „8,8…, „12,12…, and „16,16… armchair carbon nanotubes,
where m„=1,2,3, ...… is the bifurcation mode number, R and L
are the radius and length of the carbon nanotube, respectively,
and n=1,2,3, ... represents the nonaxisymmetric bifurcation
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The critical load for instability and bifurcation depends on the
interatomic potential used. The Brenner potential �7� and its
second-generation potential �8� may give quite different critical
loads. This is partially because the parameters in interatomic po-
tentials are determined by fitting the binding energy, lattice con-
stants, elastic properties, and vacancy formation energy of dia-
mond and graphite, which are properties at the vanishing strain
level, i.e., not accounting for the behavior at the finite strain.
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Surface Effect and Size
Dependence on the Energy
Release Due to a Nanosized Hole
Expansion in Plane Elastic
Materials
This paper deals with the surface effect and size dependence on the M-integral repre-
senting the energy release due to a nanodefect expansion in plane elasticity. Due to the
high surface-to-volume ratio for reinforcing particles in the nanometer scale, the surface
effect along the nanosized hole may be induced from the residual surface stress and the
surface Lamé constants. The invariant integrals such as the Jk-integral vector and the
M-integral customarily used in macrofracture mechanics are extended to treat plane
elastic materials containing a nanosized hole. It is concluded that both components of the
Jk-integral vanish when the contour selected to calculate the integral encloses the whole
nanosized hole. This leads to the independence of the M-integral from the global coor-
dinate shift. It is concluded that the surface effect and the size dependence on the energy
release due to the nanohole expansion are significant especially when the hole size is less
than 40 nm. This present study reveals that the discrepancies of the M-integral value with
the surface effect from the referenced value M0 without the surface effect are mainly
induced from the residual surface stress �0 rather than from the surface Lamé constants
�s and �s. �DOI: 10.1115/1.2965368�

Keywords: invariant integral, nanosized hole, surface effect size dependence

1 Introduction

The microelectromechanical system �MEMS� and advanced
materials in the nanometer scale become increasingly popular ow-
ing to their wide potential applications in constructing new micro-
instruments and highly effective memory materials. These moti-
vate a new interest in nanomechanics. A detailed review has been
given by Ortiz �1�. On the other hand, the well-known invariant
integrals derived from Noether’s theorem in macroelasticity such
as the Jk-integral vector and M-integral have been proved to be
extremely attractive over the past three decades �2–5�. Physically,
the Jk-integral vector �k=1,2� and M-integral can be interpreted
as the energy release for defect movements and uniform defect
expansion, respectively �6�. More recently, Chen �7,8� concluded
that the physical meaning of the M-integral can be interpreted as
the energy release in many macrodefect cases. However, to the
present authors’ knowledge, the above mentioned integrals were
always limited to the macroelasticity and no one in open literature
had accounted for the role of the invariant integrals played in
nanomaterials. As well known, due to the high surface-to-volume
ratio for reinforcing particles in the nanometer scale, the surface
effect and the size dependence should be considered in detail,
which may yield an un-negligible traction on the surface of a
nanosized hole. This is quite different from those in macroelastic-
ity, where the traction-free condition is always assumed along the
surface of the macrosized hole. Hence, some basic properties of
the invariant integrals are needed to be re-analyzed in nanomate-

rials when considering the surface effect on the nanosized hole.
Only after doing so could the extensive application of the invari-
ant integrals in the nanomaterials be developed.

The goal of this paper is to supply the lack of the invariant
integrals �e.g., Jk-integral vector and M-integral� in nanomechan-
ics with defects. Attention is focused on the surface effect and its
influence on the size dependence of the invariant integrals in na-
nomaterials with defects. As an initial attempt, an infinite elastic
plane containing a nanosized circular hole is considered, as shown
in Fig. 1. The analytical solution of the full fields can be obtained
by using the classical complex potential method �9� together with
the surface effect or the non-traction-free condition along the rim
of the nanosized hole. It is concluded that a conservation law of
the Jk-integral vector still exists in this case. That is, both compo-
nents of the Jk-integral vector defined in a global coordinate sys-
tem vanish when the integration contour chosen to calculate the
two components of the vector encloses the whole nanosized hole.
It is also concluded that the M-integral in nanomaterials possesses
the independence from the coordinate system shift or rotation
even though the surface effect or the non-traction-free condition is
considered. Numerical results reveal that the influence of the sur-
face effect on the M-integral is size dependent on both the surface
constants and the residual surface stress. However, we find that
the large discrepancies of the M-integral value from the refer-
enced value M0 without the surface effect are mainly induced
from the residual surface stress �0 rather than from the surface
Lamé constants �s and �s. That is, in the absence of the residual
surface stress �0, the surface Lamé constants �s and �s only yield
some very small effect on the M-integral. In most cases, the rela-
tive errors, i.e., �M0−M� /M0, are less than 5% except for the case
when the hole is extremely small �say, less than 2 nm�. Whereas,
in the absence of the surface Lamé constants �s and �s, the re-
sidual surface stress �0 yields a significant effect on the
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M-integral. In most cases, the discrepancies may be larger than
100%. Even when the hole is large enough, say, 40 nm, the dis-
crepancy is still over 10%. This provides a possible way to study
the coalescence or interaction among many nanosized holes.

2 Analytical Solutions for Plane Elasticity Containing
a Nanosized Circular Hole

We consider an infinite elastic plane containing a nanosized
circular hole with radius a, as shown in Fig. 1. The remote load-
ings are denoted by �11

� , �12
� , and �22

� , respectively. Here, the hole
surface is no longer traction-free, rather, the surface stress that
originated from the intrinsic surface/interface energy should be
taken into account, which may play a significant role in control-
ling the deformation of the nanoscale structure. In plane isotropic
elasticity in the absence of body forces with the assumption that
the surface adheres to the bulk without slipping, the equilibrium
and constitutive equations can be expressed as follows:

�ij,j = 0 �1�

�ij = ��kk�ij + 2��ij �2�

where � and � are the Lamé constants, �ij is the Kronecker delta,
and �ij and �ij are the stress and strain components, respectively;
the implicit summation convention by the repeated index has been
adopted.

Due to the high surface-to-volume ratio for reinforcing particles
at nanoscale, the role of surface effect along the nanosized hole
becomes important. This yields an un-negligible traction on the
surface of the nanosized hole. Assume that the surface adheres
perfectly to the bulk material without slipping. The equilibrium
equation and the constitutive relations on the surface are ex-
pressed as �10–13�

�ijninj =
��	

s

a
�3�

��	
s = �0��	 + 2��s − �0���	 + ��s + �0��

��	 �4�

where ni is the normal vector of the surface, �ab
s is the surface

stress tensor, a is the radius of the nanohole, �0 is the residual
surface stress under an unstrained condition, and �s and �s are the
surface Lamé constants, which depend on the material type and
the surface crystal orientation. As seen in Eq. �3�, when the size of
hole is in macroscale, the surface effect can be neglected. How-
ever, when the size of hole is in nanoscale, the surface effect
would be significant and has to be considered in analysis.

In the classical complex potential method in plane elasticity, the
stress components ���� , ��� , ���� and the displacement compo-
nents �u� , u�� in the polar coordinate system �� , �� can be ex-
pressed by two functions �z� and ��z�:

��� + ��� = 4 Re ��z�

��� − i��� = ��z� + ��z� − e2i��z̄��z� + ���z��

2��u� + iu�� = e−i����z� − z��z� − ��z�� �5�

where k= �3−n� / �1+n� is for the plane stress problem, k= �3
−4n� is for the plane strain problem, and v is the Poisson ratio.

Generally speaking, the complex potentials �z� and ��z� can
be expanded into the following Laurent series form �9,13�:

�z� = Az + �
n=1

�

Anz−n, ��z� = Bz + �
n=1

�

Bnz−n �6�

Substituting Eq. �6� into Eq. �5� and using Eqs. �3� and �4� at the
surface of the nanosized hole as well as the loading condition at
infinity, we can obtain

A =
�11

� + �22
�

4
, B =

�22
� − �11

� + 2i�12
�

2

A1 =
− �1 + 2�1�B

1 + 4�1 + �2��1 + �3�
, An = 0 �n � 2�

B1 =
�0 + 2A�2��1 + �3� − 2A

1 + 2�1
, B2 = 0

B3 =
B�2��1 + �3� − B

1 + 4�1 + �2��1 + �3�
, Bn = 0 �n � 4� �7�

where

�1 =
2�s + �s − �0

4a�
�8�

for plane strain

�2 =
2�

� + �
, �3 = 0 �9�

and for plane stress

�2 =
2�� + 2��
�3� + 2��

, �3 =
��s + �0��

4a��� − 1�
�10�

The complete expressions of the stresses and the displacements
can be given by substituting Eqs. �6�–�10� into Eq. �5�. After
lengthy but straightforward manipulations, we have

��� =
1

a
�2A +

B1a2

�2 + �−
4A1a2

�2 +
3B3a4

�4 − B�cos�2��	
��� =

1

a
�−

2A1a2

�2 +
3B3a4

�4 + B�sin�2��

��� =
1

a
�2A −

B1a2

�2 − �3B3a4

�4 − B�cos�2��	 �11�

u� =
1

2�
��A�

a
−

B1a

�
−

A�

a
+ ��A1a

�
−

B�

a
−

B3a3

�3

+
A1a

�
�cos�2��	

u� =
1

2�
�−

�A1a

�
+

B�

a
−

B3a3

�3 +
A1a

�
�sin�2�� �12�

Fig. 1 Plane elasticity containing a nanosized hole with the
surface effect
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3 Some Basic Properties of the Invariant Integrals as
Influenced by the Surface Effect

The M-integral and Jk-integral vectors �3,4� in macroplane elas-
ticity can be extended to treat nanomaterials with defects, which
are formulated as follows:

M =

C

�wxini − Tkuk,ixi�ds �13�

Jk =

C

�wnk − ui,kT�ids �k = 1,2� �14�

where C is a counterclockwise contour enclosing the whole nano-
sized hole, as shown in Fig. 1, w=�ij�ij /2 is the strain energy
density, Tk is the principle traction acting on the outside of a
closed contour C , xj with j=1,2 representing a rectangular plane
coordinate system, and ni is the outside normal component of
Contour C.

For convenience, we prefer to obtain the expressions of such
invariant integrals from the polar coordinate system �� , ��, which
are cited below:

J1 =

C

�w cos � − ���� cos � −
sin �

�

�u�

��
�T�

− � �u�

��
cos � −

sin �

�

�u�

��
�T��ds �15�

J2 =

C

�w sin � − ���� sin � +
cos �

�

�u�

��
�T�

− � �u�

��
sin � +

cos �

�

�u�

��
�T��ds �16�

M =

C

�w − T���� − T��2��� +
u�

�
−

1

�

�u�

��
�	�ds �17�

According to the intrinsic path-independence of the invariant in-
tegrals, we select a special circular contour as the integral path
�see Contour C in Fig. 1�, along which we have

T� = ���, T� = ���, ds = �d� �18�

Substituting Eqs. �11�, �12�, and �18� into Eqs. �15� and �16�, we
can prove that the following relations are always valid:

J1  0, J2  0 �19�

In deriving Eq. �19�, we have used the following identities:

�
0

2�

cos�n��d� = 0, �
0

2�

sin�n��d� = 0, �n � 0� �20�

Equation �19� shows that both the remote loadings and the surface
effect have no contribution to the value of the Jk-integral. In other
words, both the J1-integral and the J2-integral always vanish, pro-
vided that the closed contour encloses the whole nanohole. This
means that a conservation law of the Jk-integral vector exists in
nanomaterials with defects even though some unknown stresses
are attached on the nanosized hole surfaces.

On the other hand, the independence of the M-integral from the
coordinate system shift or rotation should also be clarified in de-
tail. When the coordinate axes �x1 ,x2� are rotated through an angle
−��, a new coordinate system �x1

� ,x2
�� is proposed. Since the

M-integral is an inner product of the Jk-integral vector and the
vector xk= �x1 ,x2�, as defined in Eq. �13�, it is scalar and hence
invariant after the rotation

M��x1
�,x2

�� = M�x1,x2� �21�

where the integrals M*�x1
� ,x2

�� and M�x1 ,x2� are defined in �x1
� ,x2

��
and �x1 ,x2�, respectively.

Now, we consider whether the M-integral varies when one sys-
tem of rectangular coordinates �x1 ,x2� shifts to another �x01,x02�
with the following relations:

x1 = x01 − �1

x2 = x02 − �2 �22�

The value of the M-integral in the new system �x01,x02� de-
noted by M� should be given by substituting Eq. �22� into Eq.
�13�,

M��x01,x02� =

C

�wx0ini − Tkuk,ix0i�ds

= M�x1,x2� + �1J1�x1,x2� + �2J2�x1,x2� �23�

Obviously, the first term in the right hand of Eq. �23� is just the
same as the M-integral in the original system �x1 , x2�, whereas,
according to the conservation laws of the Jk-integral in Eq. �19�,
the last two terms in Eq. �23� should vanish. Thus, the value of the
M-integral in nanomaterials does not depend on the shift and ro-
tation of the global coordinate system even though the surface of
the nanohole is no longer traction-free.

Subsequently, attention is paid to the influence of the surface
effect on the M-integral value. Substituting Eqs. �11� and �12� into
Eq. �17� yields

M =
− 8AB1��1 − �2�

E
�24�

where E is Young’s modulus; the coefficients A and B1 have been
given by Eq. �7�, which is determined by the remote loadings, the
size of the hole, the surface effect, and the material constants. For
the plane stress condition, E in Eq. �24� should be replaced by
E�1−�2�.

In order to clearly understand the influence of the surface effect
or the size dependence on the energy release represented by the
M-integral, we take a typical polycrystalline aluminum �E
=70.3 GPa, v=0.345�� as an example and calculate numerical
results of the M-integral by Eq. �24� under plane strain deforma-
tion. The surface effect along the nanosized hole is represented by
the surface Lamé constants �s and �s and the residual surface
stress �0. Two different cases of surface effect are considered in
the present investigation, respectively, i.e., �i� �s=−5.4251 N /m,
�s=3.4939 N /m, and �0=0.5689 N /m for the Al �1 0 0� surface
and �ii� �s=−0.3760 N /m, �s=6.8511 N /m, and �0

=0.9108 N /m for the Al �1 1 1� surface �13�.
First, the effect of the surface Lamé constants �s and �s on the

M-integral is plotted in Fig. 2 for the case �0=0, where M0 de-
notes the referenced value obtained in the classical elasticity with-
out the surface effect, i.e., �s=0, �s=0, and �0=0. Figure 2 shows
that different surface constants yield some different values of the
M-integral as compared to the referenced value. However, the
differences are not significant due to the relative errors, i.e., �M0
−M� /M0, which are less than 5% in most cases. Only when the
hole radius is extremely small as less than 2 nm would the errors
be larger than 5%. This indicates that the surface constants with-
out the residual surface stress �0 do not significantly influence the
M-integral and in turn the size dependence on the M-integral is
very small except the hole size being extremely small �less than 2
nm�. Indeed, as shown in Fig. 2, the effect of the surface constants
without the residual surface stress �0 is negligible when the hole
radius is over 5 nm with the values of the M-integral being nearly
equal to the referenced value M0.
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Second, Fig. 3 shows the effect of the residual surface stress �0

on the M-integral for the case without the surface constants ��s

=0, �s=0�. Large discrepancies can be found between the values
of the M-integral and the referenced value M0 without the surface
effect. As seen in Fig. 3, these discrepancies increase very rapidly
when the radius of the hole decreases. For example, the relative
errors become 100% or more when the hole size is 5 nm. Even
when the hole size is large enough, say, 40 nm, these errors are
still larger than 10%, which could not be neglected. It is con-
cluded that the surface effect is mainly due to the residual stress �0

rather than the surface Lamé constants �s and �s, whereas the
existence of the residual stress along the nanohole always de-
creases the energy release as represented by the M-integral.

Third, Fig. 4 shows the discrepancies between the M-integral
for two different combinations of the residual surface stress �0 and
the surface constants �s and �s. Similar to the above discussions,
the surface effect or size dependence is significant mainly due to
the existence of the residual surface stress �0. The larger the re-
sidual surface stress is, the larger the discrepancy is. For example,
the residual surface stress �0 being 0.9108 N/m yields much larger
discrepancies of the M-integral from the referenced value than
those for �0 being 0.5689 N/m. Even when the hole size is large
enough, say, 40 nm, these discrepancies are still larger than 10%,
which could not be neglected.

4 Conclusions and Remarks
Although the surface effect of the nanosized hole induced from

the residual stress �0 and the surface Lamé constants �s and �s

exists and the hole surfaces are no longer traction-free, this study
clarifies that the M-integral is still independent from the coordi-
nate shift or rotation and both components of the Jk-integral vec-
tor vanish in plane elastic materials with a single nanosized hole.
It is concluded that the surface effect or the size dependence on
the energy release due to the hole expansion, i.e., the M-integral,
is significant. However, this is mainly due to the residual stress �0

rather than from the surface Lamé constants �s and �s. This study
is consistent with those obtained in previous investigations, where
the surface effect has been proved to yield significant influence on
some other mechanical properties in nanomaterials, e.g., the de-
formation state �14�, the effective modulus �15�, the plane waves
�16�, etc. The present investigation provides some fundamental
understanding on the Jk-integral and the M-integral in nanodefect
mechanics. As the M-integral represents the energy release due to
defect expansion, it could be used to describe the surface effect
induced from other nanodefects. For example, the surface effect
on the coalescence or interaction between two nanoholes is of
physical importance, which will be presented in our consequent
work. It should be emphasized that Jiang et al. �17� developed a
cohesive law for interfaces between a carbon nanotube �CNT� and
polymer to estimate the surface effect from the atomistic model.
However, we pay more attention to the continuum model in our
present study and the atomistic model established by Jiang et al.
�17� would be perhaps involved in our consequent work.
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Structure Design of a
Piezoelectric Composite Disk for
Control of Thermal Stress
In order to realize a plan for a hypersonic aircraft, development of a smart heat-resisting
plate possible to control a thermal stress has been required because the safety of struc-
tural members must be secured even if they are exposed to a severe thermal loading
beyond an estimated load. In view of such a background, this paper deals with a control
problem of a thermal stress in a multilayer composite circular disk consisting of a struc-
tural layer and piezoceramic layers with concentrically arranged electrodes. When a
heating temperature distribution acts on the structural layer surface, the maximum ther-
mal stress in the structural layer can be suppressed by applying appropriate voltages to
the electrodes. This thermo-elastic problem has been theoretically analyzed by employing
the potential function techniques. Utilizing the analytical results, the nonlinear optimiza-
tion problem for determining the applied voltages is transformed into a linear program-
ming problem and then the optimum solution is successfully obtained. Based on the
obtained solutions, the structure of a composite disk has been designed in order to
demonstrate the function of stress control to the fullest extent possible. Finally, numerical
results for the stresses before and after applying the determined voltages as well as for
the structure design of the composite disk and the suppression ratio of the maximum
thermal stress are shown in graphical and tabular forms. It is seen from the numerical
results that the maximum thermal stress can be reduced by about 34% when the structure
of the composite disk is designed optimally. �DOI: 10.1115/1.2965369�

Keywords: thermo-elasticity, stress control, piezoelectric actuation, multilayer composite
disk, structure design, linear programming

1 Introduction

Researches on smart structures have attracted considerable at-
tention in recent two decades. Since piezoelectric materials per-
form both functions called “self-monitoring” and “self-control,”
which are essential for smart structures, various electro-elastic
problems of piezoelectric-based structures have been analyzed.
Saravanos and Heyliger �1� as well as Wang and Yang �2� deliv-
ered review papers on mechanics and high-order theories for lami-
nated piezoelectric plates. Rao and Sunar �3,4� and Irschik �5�
reviewed important articles on smart structures mainly operated
under isothermal conditions, while Tauchert et al. �6–8� reviewed
papers concerning smart structures adaptable to the change in
thermal environments.

As regards recent papers discussing the control of a thermal
displacement, steady �9� and transient �10� thermo-elastic prob-
lems of functionally graded material �FGM� plates with a piezo-
electric layer were analyzed and the distributions of applied volt-
ages for suppressing the deflection at the center of the plates were
numerically determined. Other related investigations include
Ootao and Tanigawa �11�, Ishihara and Noda �12,13�, Yang et al.
�14�, and Oh �15��. Focused on the control of a thermal displace-
ment distribution, steady �16,17� and transient �18–20� thermo-
elastic problems in piezoelectric composite plates were analyzed
and the distributions of applied voltages were theoretically ob-
tained so that the bottom surface of the plate had a desired dis-
placement distribution. For a more realistic model, the work �17�
was extended to the problems of controlling a thermal displace-

ment distribution through application of stepwise voltages
�21,22�, in which case the applied voltages were determined by
optimization.

Now, concerning the control of a thermal stress, it seems that
there is only a paper �23� within the authors’ knowledge. The
paper demonstrated the possibility of controlling a thermal stress
in a composite disk consisting of a structural layer and piezocer-
amic layers when the structural layer surface was exposed to a
heating temperature distribution. It was then assumed that a num-
ber of electrodes of the same width were arranged at equal inter-
vals on each piezoceramic layer. Applied voltages were deter-
mined by solving a nonlinear optimization problem in order to
minimize the maximum thermal stress in the structural layer. For
successful and efficient utilization of smart structures for control
of a thermal stress, further research is needed.

The present paper extends the previous work �23� to a structure
design problem of the composite disk in order to demonstrate the
function of stress control to the fullest extent possible. The non-
linear optimization problem of determining the applied voltages is
transformed to a linear programming problem by introducing new
optimization variables. The applied voltages can be successfully
determined so that the maximum thermal stress in the structural
layer is minimized subject to constraints on stresses in piezocer-
amic layers. It is seen from numerical results that the maximum
thermal stress can be reduced by about 34% when the structure of
the composite disk is designed optimally. This reduction is about
twice as high as that obtained under similar conditions in the
previous work �23�.

2 Basic Equations
For an axisymmetric problem of thermo-elasticity in trans-

versely isotropic solids, it is convenient to represent the tempera-
ture change T as the sum of two functions:
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T�r,z� = Tz�z� + Trz�r,z� �1�

The temperature field is governed by Fourier’s heat conduction
equation:

Tz,zz = 0, �r�1Trz + �zTrz,zz = 0 �2�

where �i are coefficients of thermal conductivity, Tz,z=�Tz /�z, and
�1=�2 /�r2+r−1� /�r.

In the following analysis, material constants of nonpiezoelectric

solids will be denoted by symbols with a tilde such as �̃i, whereas
those of piezoelectric solids will be represented by symbols with-
out a tilde such as �i.

2.1 Response of Transversely Isotropic Solids. Constitutive
equations for the thermo-elastic field of transversely isotropic sol-
ids without the piezoelectric effect are expressed as

�rr = c̃11ur,r + c̃12r
−1ur + c̃13uz,z − �̃1T

��� = c̃12ur,r + c̃11r
−1ur + c̃13uz,z − �̃1T

�zz = c̃13ur,r + c̃13r
−1ur + c̃33uz,z − �̃3T

�zr = c̃44�uz,r + ur,z� �3�

where �ij are stresses, ui are displacements, c̃ij are elastic stiff-

nesses, and �̃i are stress-temperature coefficients.
The displacements are expressed in terms of six potential func-

tions �i and �i �i=0–2� as �19,24�

ur = ��1 + �2 + �1 + �2�,r

uz = ��0 + k̃1�1 + k̃2�2 + �0 + k̃1�1 + k̃2�2�,z �4�

The governing equations of the potential functions are

�0,zz =
�̃3

c̃33

Tz, �1�i + �̃i�i,zz = 	̃iTrz �i = 1,2� �5�

�0,zz = 0, �1�i + �̃i�i,zz = 0 �i = 1,2� �6�

where k̃i, �̃i, and 	̃i are known coefficients related to the material
constants �19,24�.

2.2 Response of Piezoelectric Solids. For the thermo-elastic
field in piezoelectric solids exhibiting the symmetry properties of
crystal class 6 mm, constitutive equations are

�rr = c11ur,r + c12r
−1ur + c13uz,z + e1
,z − �1T

��� = c12ur,r + c11r
−1ur + c13uz,z + e1
,z − �1T

�zz = c13ur,r + c13r
−1ur + c33uz,z + e3
,z − �3T

�zr = c44�uz,r + ur,z� + e4
,r �7�

whereas constitutive equations for the electric field are

Dr = e4�uz,r + ur,z� − �1
,r

Dz = e1ur,r + e1r−1ur + e3uz,z − �3
,z + p3T �8�

in which 
 is the electric potential, Di are dielectric flux densities,
ei are piezoelectric constants, �i are dielectric permittivities, and
p3 is the pyroelectric constant.

The displacements and electric potential are expressed as
�19,25�

ur = ��1 + �2 + �
i=1

3

�i�i�,r

uz = ��0 + k1�1 + j1�2 + �0 + �
i=1

3

mi�i�,z �9�


 = �0 + �1 + 0 + �
i=1

3

ni�i,z �10�

where �i �i=0–2�, �i �i=0,1�, 0, and �i �i=0–3� are potential
functions governed by

�0,zz = �1Tz

��1 + �1
�2

�z2���1 + �2
�2

�z2���1 + �3
�2

�z2��1

= d2�1�1Trz + d1�1Trz,zz + d0Trz,zzzz

�2,zz =
1

	1
��1�1 + �1�1,zz − �1Trz� �11�

�0,z = �2Tz, �1,z =
1

	2
��1�2 + �2�2,zz − �2Trz� �12�

0,z = C, �0,zz = −
e3

c33
C, �1�i + �i�i,zz = 0 �i = 1 – 3�

�13�

in which C is an unknown coefficient to be determined from
boundary conditions and �i, mi, ni, k1, j1, �i, �i, di, �i, 	i, and �i
are known coefficients related to the material constants �19,25�.

3 Presentation of Problem and Analysis
Let us consider a composite disk consisting of a transversely

isotropic structural layer and piezoceramic layers of crystal class
6mm, as shown in Fig. 1. A number of electrodes are arranged
concentrically on the upper surface of each piezoceramic layer.
The layers are numbered 0−N from the bottom and the electrodes
are numbered 1−M from the center. The thickness of the ith layer
is denoted by ci, the width of the kth electrode is represented by
wk, and the interval between the �k−1�th and kth electrodes is
designated by qk. The existence of folia such as electrodes and
glue lines between the adjoining layers can be disregarded and
perfect contact between the adjoining layers is assumed in the
analysis.

3.1 Thermo-Elastic Response. Let us consider a thermo-
elastic problem of the composite disk, when a heating temperature
distribution Tc f�r� acts on the bottom surface, heat convection
occurs over the top surface, and the cylindrical surface is ther-
mally insulated. The thermal boundary and interface conditions
are then expressed as

T0,z − h0T0 = − h0Tc f�r� on z = 0 �14�

T0 = T1, − �̃zT0,z = − �zT1,z onz = b0

Fig. 1 Geometry of a multilayer composite disk
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Ti = Ti+1, − �zTi,z = − �zTi+1,z on z = bi �i = 1 – �N − 1��
�15�

TN,z + hNTN = 0 on z = bN �16�

Ti,r = 0 on r = a �i = 0 − N� �17�

where response quantities in the ith layer are represented by cor-
responding symbols with the subscript i, Tc is a constant tempera-
ture, and hi are coefficients of relative heat transfer.

It is considered that the bottom and top surfaces of the compos-
ite disk are taken to be traction free, the cylindrical surface is
smoothly constrained against radial deformation, and the cylindri-
cal edge of the bottom surface is simply supported. In this case the
elastic boundary and interface conditions are given by

uir
T = 0, �irz

T = 0 on r = a �i = 0 – N� �18�

�0zz
T = �0rz

T = 0 on z = 0 �19�

uir
T = u�i+1�r

T , uiz
T = u�i+1�z

T , �izz
T = ��i+1�zz

T , �irz
T = ��i+1�rz

T

on z = bi �i = 0 – �N − 1�� �20�

�Nzz
T = �Nrz

T = 0 on z = bN �21�

u0z
T = 0 at r = a,z = 0 �22�

where symbols with the superscript T denote response quantities
induced by the thermal load.

Assuming that the upper and cylindrical surfaces of all piezo-
ceramic layers are free of electric charge and the lower surface of
every piezoceramic layer is electrically grounded, the electric
boundary conditions are given by

Dir
T = 0 on r = a �i = 1 – N� �23�


i
T = 0 on z = bi−1 �i = 1 – N� �24�

Diz
T = 0 on z = bi �i = 1 – N� �25�

Let us analyze the thermo-elastic problem described above. The
solutions to Eq. �2� are expressed as

Tiz = Ai0
T + Bi0

T z

Tirz = �
l=1

�

J0��lr��Ail
T cosh

�lz

�i
+ Bil

T sinh
�lz

�i
� �i = 0 – N�

�26�

where �0
2= �̃2= �̃z / �̃r and �i

2=�2=�z /�r �i=1–N�. Equation �26�
is found to satisfy the boundary conditions �17�, providing �l are
the roots of the equation

J1��la� = 0 �27�

Utilizing the boundary conditions �14�–�16�, the coefficients Ai0
T ,

Bi0
T , Ail

T, and Bil
T can be determined.

For a thermo-elastic field of the structural layer, potential func-
tions which satisfy their governing equations given in Eqs. �5� and
�6� are given by

�00
T =

�̃3

c̃33
�A00

T z2

2
+ B00

T z3

6
�

�0j
T = F̃j�

l=1

�
J0��lr�

�l
2 �A0l

T cosh
�lz

�̃
+ B0l

T sinh
�lz

�̃
	 �j = 1,2�

�28�

�00
T = C00

T z

�0j
T = �

l=1

�
J0��lr�

�l
2 �D0jl

T cosh
�lz


�̃ j

+ E0jl
T sinh

�lz


�̃ j
	 �j = 1,2�

�29�

where F̃j are known coefficients, while C00
T , D0jl

T , and E0jl
T are

unknown coefficients to be determined from the boundary condi-
tions. Substituting Eqs. �26�, �28�, and �29� into Eqs. �4� and �3�,
the displacements and stresses in the structural layer can be ob-
tained. For example, the radial stress is expressed by

�0rr
T = � c̃13

c̃33

�̃3 − �̃1��A00
T + B00

T z�

+ �
l=1

� ���− c̃11�F̃1 + F̃2� +
c̃13�k̃1F̃1 + k̃2F̃2�

�̃2
− �̃1J0��lr�

+ �c̃11 − c̃12��F̃1 + F̃2�
J1��lr�

�lr
	

��A0l
T cosh

�lz

�̃
+ B0l

T sinh
�lz

�̃
	

− �
j=1

2 ��c̃11 −
c̃13k̃j

�̃ j

�J0��lr� − �c̃11 − c̃12�
J1��lr�

�lr
	

� �D0jl
T cosh

�lz


�̃ j

+ E0jl
T sinh

�lz


�̃ j
	� �30�

For thermo-electro-elastic fields of the piezoceramic layers, the
potential functions which satisfy their governing equations given
in Eqs. �11�–�13� are taken to be

��i0
T = �1�Ai0

T z2

2
+ Bi0

T z3

6
�

�ij
T = Fj�

l=1

�
J0��lr�

�l
2 �Ail

T cosh
�lz

�
+ Bil

T sinh
�lz

�
	 �j = 1,2� �

�i = 1 – N� �31�

��i0
T = �2�Ai0

T z + Bi0
T z2

2
�

�i1
T = F3�

n=1

�
J0��lr�

�l
�Ail

T sinh
�lz

�
+ Bil

T cosh
�lz

�
	 � �i = 1 – N�

�32�

�i0
T = Ci0

T z + Gi0
T , �i0

T = −
e3

c33
Ci0

T z2

2
+ Ci1

T z

�ij
T = �

l=1

�
J0��lr�

�l
2 �Dijl

T cosh
�lz

� j

+ Eijl
T sinh

�lz

� j

	 �j = 1 – 3� �
�i = 1 – N� �33�

where Fj are known coefficients, while Cij
T , Gi0

T , Dijl
T , and Eijl

T are
unknown coefficients to be determined from the boundary condi-
tions. Substituting Eqs. �26� and �31�–�33� into Eqs. �9�, �10�, �7�,
and �8�, the displacements, electric potential, stresses and dielec-
tric flux densities in every piezoceramic layer can be obtained. For
example, the electric potentials and radial stresses are expressed
by
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i
T = �2�Ai0

T z + Bi0
T z2

2
� + Ci0

T z + Gi0
T

+ �
l=1

�
J0��lr�

�l
�F3�Ail

T sinh
�lz

�
+ Bil

T cosh
�lz

�
	

+ �
j=1

3
nj


� j
�Dijl

T sinh
�lz

� j

+ Eijl
T cosh

�lz

� j

	� �i = 1 – N�

�34�

�irr
T = �c13�1 + e1�2 − �1��Ai0

T + Bi0
T z� + �e1 −

c13e3

c33
�Ci0

T

+ �
l=1

� ���− c11�F1 + F2� +
c13�k1F1 + j1F2�

�2

+
e1F3

�
− �1J0��lr� + �c11 − c12��F1 + F2�

J1��lr�
�lr

	
��Ail

T cosh
�lz

�
+ Bil

T sinh
�lz

�
	 − �

j=1

3 ��c11� j

−
c13mj + e1nj

� j
�J0��lr� − �c11 − c12�� j

J1��lr�
�lr

	
� �Dijl

E cosh
�lz

� j

+ Eijl
T sinh

�lz

� j

	� �i = 1 – N� �35�

Utilizing the boundary conditions given in Eqs. �19�–�22�, �24�,
and �25�, all unknown coefficients Cij

T , Gi0
T , Dijl

T , and Eijl
T can be

determined, where Eqs. �18� and �23� are satisfied identically be-
cause of Eq. �27�.

3.2 Electro-Elastic Response. Let us consider an electro-
elastic problem of the composite disk when stepwise voltages are
applied to electrodes on every piezoceramic layer:


i
E = �

k=1

M

Vik�H�r − rk + wk� − H�r − rk�� on z = bi �i = 1 – N�

�36�

where Vik is the voltage applied to the kth electrode on the ith
piezoceramic layer �i.e., �i−k�th electrode�, H�r� is Heaviside’s
unit step function, rk is the outer radius of the kth electrode, and
symbols with the superscript E denote response quantities induced
by the electric load. The boundary conditions given in Eqs.
�18�–�24� are still applicable in this situation, but the superscript
must be changed from T to E.

In order to analyze this problem efficiently, we consider a case
where the unit voltage Vu is applied to the �n−m�th electrode only.
Let the discrete response quantities in the ith layer induced by the
unit voltage be ��uij

E�nm, ���ijk
E �nm, ��
i

E�nm, and ��Dij
E�nm, they

can be obtained by employing the potential function techniques.
As a result, eliminating the terms of the temperature change from
the expressions for the thermo-elastic response, namely, substitut-
ing Ai0

T =Bi0
T =Ail

T =Bil
T =0 into Eqs. �30�, �34�, and �35�, the discrete

electro-elastic response quantities can be obtained:

���0rr
E �nm = − �

l=1

�

�
j=1

2 ��c̃11 −
c̃13k̃j

�̃ j

�J0��lr� − �c̃11 − c̃12�
J1��lr�

�lr
	

� ���D0jl
E �nm cosh

�lz


�̃ j

+ ��E0jl
E �nm sinh

�lz


�̃ j
	 �37�

��
i
E�nm = ��Ci0

E �nmz + ��Gi0
E �nm

+ �
l=1

�
J0��lr�

�l
�
j=1

3
nj


� j
���Dijl

E �nm sinh
�lz

� j

+ ��Eijl
E �nm cosh

�lz

� j

	 �i = 1 – N� �38�

���irr
E �nm = �e1 −

c13e3

c33
���Ci0

E �nm − �
l=1

�

�
j=1

3 ��c11� j

−
c13mj + e1nj

� j
�J0��lr� − �c11 − c12�� j

J1��lr�
�lr

	
� ���Dijl

E �nm cosh
�lz

� j

+ ��Eijl
E �nm sinh

�lz

� j

	
�i = 1 – N� �39�

where ��Cij
E�nm, ��Gi0

E �nm, ��Dijl
E �nm, and ��Eijl

E �nm are unknown
coefficients and determined by utilizing the boundary conditions
corresponding to Eqs. �19�–�22� and �24� as well as the boundary
conditions �36� when Vik=Vu�i=n ,k=m� and Vik=0�i�n ,k�m�.
The boundary conditions corresponding to Eqs. �18� and �23� are
identically satisfied because of Eq. �27�. The discrete response
quantities resulting from the unit voltage applied to each electrode
can be calculated in advance and recorded in a database.

When a voltage of arbitrary magnitude Vnm is applied to the
�n−m�th electrode, it is expressed as

Vnm = PnmVu �40�

in which Pnm is the magnification factor. In the case where an
arbitrary voltage is applied to every electrode, the response quan-
tities are given by

�uij
E,�ijk

E ,
i
E,Dij

E�

= �
n=1

N

�
m=1

M

Pnm���uij
E�nm,���ijk

E �nm,��
i
E�nm,��Dij

E�nm� �41�

3.3 Thermo-Electro-Elastic Response. When the composite
disk is subjected to both thermal and electric loads, the resultant
response is obtained by superimposing the responses due to each
load:

�uij,�ijk,
i,Dij� = �uij
T ,�ijk

T ,
i
T,Dij

T� + �uij
E,�ijk

E ,
i
E,Dij

E� �42�

4 Determination of Applied Voltages
Let us determine the applied voltages Vik so that the maximum

thermal stress in the structural layer is minimized subject to con-
straints on the stresses in the piezoceramic layers. This optimiza-
tion problem is defined by

find V = �V11,V12, . . . ,VNM�T

to minimize fobj�V� = max
r,z

��st, ��sc�, ��ss��

subject to �pt � �pt
A , ��pc� � ��pc

A �, ��ps� � �ps
A �43�

where � �T denotes a transposed matrix; �st, �sc, and �ss are the
maximum tensile, compressive, and shear stresses in the structural
layer; �pt, �pc, and �ps are the maximum stresses in the piezoce-
ramic layers; and �pt

A , �pc
A , and �ps

A are the corresponding allow-
able stresses. In order to assess a performance of the stress con-
trol, the ratio R evaluating the suppression of the maximum
thermal stress in the structural layer is introduced:
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R = �1 − Rs� � 100 �%�, Rs =
�0 max

�0 max
T �44�

where

�0 max
T = max

r,z
���0rr

T �, ��0��
T �, ��0zz

T �, ��0rz
T ��

�0 max = max
r,z

���0rr�, ��0���, ��0zz�, ��0rz�� �45�

In the previous work �23�, the quasi-Newton method was em-
ployed for solving a nonlinear optimization problem similar to Eq.
�43�, but the solution strongly depended on the choice of initial
optimization variables and easily got stuck in a local minimum.
Therefore, it is very difficult to obtain numerous optimum solu-
tions necessary for a structure design of the composite disk by
solving Eq. �43� repeatedly under different conditions for the
thousandth time.

Now, let us consider a linearization of the nonlinear optimiza-
tion problem �43�. For that purpose, a new variable smax is intro-
duced:

max
r,z

���0rr�, ��0���, ��0zz�, ��0rz�� � smax �46�

Here, Eqs. �44�–�46� lead to smax=Rs�0 max
T . The response quanti-

ties induced by the heating temperature and the discrete response
quantities caused by each unit voltage have been obtained, respec-
tively. Therefore, utilizing Eqs. �40�–�42� and �46�, the nonlinear
optimization problem �43� is transformed into the linear program-
ming problem as follows:

find X = �P11,P12, . . . ,Pnm,Rs�T

�to minimize fobj�X� = Rs�0 max
T

subject to ���0rr�, ��0���, ��0zz�, ��0rz�� � Rs�0 max
T

�pc
A � ��irr,�i��,�izz� � �pt

A

− �ps
A � �irz � �ps

A �47�

This linearization brings the advantage that the optimum solution
can be certainly obtained.

5 Numerical Results
The structural layer is considered to be carbon fiber reinforced

plastic �CFRP� with the properties �19�,

��̃r,�̃z� = �1,0.5� W m−1 K−1

��̃1,�̃3� = �1.84,0.40� � 106 N K−1 m−2

�c̃11, c̃12, c̃13, c̃33, c̃44� = �100.2,49.8,6.86,10.9,2.87� � 109 N m−2

Ỹr = 74.3 � 109 N m−2, �̃r = 11.3 � 10−6 K−1

whereas the piezoceramic layers are taken to be cadmium selenide
having the properties �19�:

�r = �z = 9 W m−1 K−1

��1,�3� = �0.621,0.551� � 106 N K−1 m−2

�c11,c12,c13,c33,c44� = �74.1,45.2,39.3,83.6,13.2� � 109 N m−2

�e1,e3,e4� = �− 0.160,0.347,− 0.138� C m−2

��1,�3� = �82.6,90.3� � 10−12 C2 N−1 m−2

p3 = − 2.94 � 10−6 C K−1 m−2, d1 = − 3.92 � 10−12 C N−1

in which Ỹr is Young’s modulus, �̃r is the coefficient of linear
thermal expansion, and d1 is the piezoelectric coefficient.

For convenience in presentation of numerical results, the fol-
lowing dimensionless quantities are introduced:

�r̄, z̄, c̄i, b̄i,w̄k, q̄k� =
�r,z,ci,bi,wk,qk�

a
, Bi = ahi

V̄ik =
�d1�Vik

a�̃rTc

, �̄ijk =
�ijk

�̃rỸrTc

where the unit voltage is given by Vu=a�̃rTc / �d1�. The heating
temperature acting on the bottom surface of the composite disk is
considered to have a distribution of the form

f�r̄� = H�r̄o − r̄��1 − 2
r̄2

r̄o
2 +

r̄4

r̄o
4�

where r̄o is the radius of the heating region and taken to be r̄o
=0.5. It is assumed that the thicknesses of the layers are c̄0
=0.002 and c̄i=0.02 /N�i=1–N�, and Biot’s numbers are B0=1.0
and BN=0.1. In order to improve the convergence of infinite series
contained in the analytical solution, the step function is approxi-
mated as

H�r̄ − r̄k + w̄k� − H�r̄ − r̄k�

= ��1 + exp�− s�r̄ − r̄k + w̄k����1 + exp�s�r̄ − r̄k����−1

where s is a parameter that governs the accuracy of the approxi-
mation and is taken to be s=200. The allowable stresses in the
piezoceramic layers are assumed to be �̄pt

A =0.004, �̄pc
A =−0.04,

and �̄ps
A =0.002.

Figure 2 illustrates the distributions of radial and hoop thermal
stresses on the upper surface of each layer induced by the heating
temperature in the case of four piezoceramic layers �N=4�. Since
the axial and shear stresses are much smaller than the radial and
hoop stresses, they are omitted here. Values of the maximum ten-
sile, compressive, and shear thermal stresses in the structural layer
and those in piezoceramic layers are, respectively,

�̄st
T = 2.6412 � 10−6, �̄sc

T = − 0.1298, �̄ss
T = − 0.2513 � 10−3

�̄pt
T = 7.9532 � 10−6, �̄pc

T = − 0.0291, �̄ps
T = − 0.2513 � 10−3

�48�

5.1 Optimization Problem Without Stress Constraints. The
linear programming problem when the stress constraints are elimi-
nated from Eq. �47� has been solved for various widths and num-
bers of electrodes as well as for various numbers of piezoceramic
layers, assuming that the electrodes of the same width �w̄k= w̄� are
arranged at equal intervals �q̄1=0, q̄k= q̄=1 /M − w̄�0.05 �k
�2��. Figure 3 illustrates how the number M and width w̄ of
electrodes exert influence on the suppression ratio of the maxi-
mum thermal stress R in the case of four piezoceramic layers
�N=4�. It is seen from Fig. 3 that the suppression ratio is strongly
influenced not only by the number of electrodes but also by the
width of electrodes and its maximum value Rmax is obtained when
the number and width of electrodes are M =4 and w̄=0.2. Similar
results have been obtained for a composite disk with one to three
piezoceramic layers �N=1–3�. Table 1 summarizes numerical re-
sults obtained for the electrode arrangement when the suppression
ratio reaches a maximum for the case of N=1–4. This table shows
that the maximum suppression ratio Rmax slightly increases with
increasing number of piezoceramic layers and is 33.6% in the case
of N=4. Figure 4 illustrates the distributions of radial and hoop
stresses on the upper surface of each layer after applying the de-
termined voltages in the case of N=4. Compared with the stresses
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illustrated in Fig. 2, it is seen from Fig. 4 that by applying the
determined voltages, the maximum compressive thermal stress at
the center of the structural layer is suppressed effectively, but the
compressive and tensile stresses in the piezoceramic layers, re-
spectively, increase in the regions of the first and third electrodes
in particular. It follows from these results that constraints should
be imposed on the stresses in the piezoceramic layers.

5.2 Optimization Problem With Stress Constraints. The
linear programming problem with stress constraints given in Eq.
�47� has been solved for various widths and numbers of electrodes
as well as for various numbers of piezoceramic layers when the
electrodes of the same width are arranged at equal intervals. Fig-
ure 5 illustrates effects of the number M and width w̄ of electrodes
on the suppression ratio of the maximum thermal stress R in the
case of N=4. This figure shows that the suppression ratio strongly

depends on both width and number of electrodes and its maximum
value Rmax is found to be obtained in the case of M =2 and w̄
=0.375. Table 2 summarizes numerical results obtained for the
electrode arrangement when the suppression ratio reaches a maxi-
mum for the case of N=1–4. Compared with the results given in
Table 1, it is seen from Table 2 that the introduction of the stress
constraints leads to a deterioration in the effectiveness of the
stress control, but the maximum suppression ratio is still about
30% in the case of N=3 and 4. Figure 6 illustrates the distribu-
tions of radial and hoop stresses on the upper surface of each layer
after applying the determined voltages in the case of N=4. Com-
pared with the stresses illustrated in Fig. 4, the distributions of
radial and hoop stresses shown in Fig. 6 are found to be consid-
erably changed so that the maximum tensile and compressive
stresses in the piezoceramic layers do not exceed the stress con-
straints.

5.3 Structure Design of a Composite Disk. The linear pro-
gramming problem with stress constraints given in Eq. �47� has
been solved for various numbers, widths, and intervals of elec-
trodes as well as for various numbers of piezoceramic layers. The
ranges of design variables are 1�N�4, 1�M �5, 0� w̄k�0.5,
and 0� q̄k�0.5, and the increments of w̄k and q̄k are taken to be
0.025. Based on the obtained numerical results, the structure of
the composite disk is designed in order to maximize the suppres-
sion ratio of the maximum thermal stress in the structural layer.
The determined numbers, widths, and intervals of electrodes as
well as the corresponding numerical results are summarized in
Table 3. It is seen from Table 3 that the maximum suppression
ratio, which is obtained for the case of M =3, increases with in-
creasing number of piezoceramic layers. Compared with the re-
sults given in Table 2, the suppression ratio in the case of the

Fig. 2 Distributions of radial and hoop thermal stresses on the
upper surface of each layer „N=4…

Fig. 3 Effects of the number and width of electrodes on the
suppression ratio of the maximum thermal stress derived un-
der no stress constraints „N=4…

Table 1 Numerical results for the maximum suppression ratio
derived under no stress constraints in the case of the same
electrode width and interval

N 1 2 3 4

M 4 4 4 4
w̄ 0.200 0.200 0.200 0.200
q̄ 0.050 0.050 0.050 0.050

V̄11�103 0.4709 0.1224 −0.2466 −2.3238

V̄12�103 −0.0031 −0.1263 −0.1494 −1.6188

V̄13�103 −0.8752 −0.1660 0.9875 4.8586

V̄14�103 −1.2524 −0.3064 1.5168 3.9975

V̄21�103 − 0.1670 0.7342 5.2926

V̄22�103 − −0.0893 0.0004 3.9375

V̄23�103 − −0.4016 −2.3893 −9.7061

V̄24�103 − −0.5832 −3.7546 −7.3589

V̄31�103 − − −0.1910 −2.6305

V̄32�103 − − −0.0744 −2.0438

V̄33�103 − − 0.8264 4.5749

V̄34�103 − − 1.3323 2.0922

V̄41�103 − − − 0.2901

V̄42�103 − − − 0.2291

V̄43�103 − − − �0.0832

V̄44�103 − − − 0.6263

�̄st�103 0.2421 0.1731 0.7879 0.5334
�̄sc −0.0885 −0.0880 −0.0872 −0.0862
�̄ss�103 −2.6041 −3.0688 −6.2592 −4.4431
�̄pt 0.0663 0.0486 0.6106 2.1534
�̄pc −0.0105 −0.0149 −0.2893 −1.1702
�̄ps −0.0026 0.0032 −0.0646 0.2098
Rmax �%� 31.8 32.2 32.9 33.6
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different electrode widths and intervals is higher than that in the
case of the same electrode width and interval. The maximum sup-
pression ratio reaches 33.7%, in which case the design variables
are determined as N=4, M =3, q̄1=0, w̄1=0.4, q̄2=0.125, w̄2
=0.1, q̄3=0.025, and w̄3=0.35.

6 Concluding Remarks
In a composite disk consisting of a transversely isotropic struc-

tural layer and piezoceramic layers with concentrically arranged
electrodes, a problem of controlling the maximum thermal stress
through piezoelectric actuation is studied. By solving the linear
programming problem, which is transformed from the nonlinear
optimization problem, the applied voltages have been determined
so that the maximum thermal stress in the structural layer is mini-
mized subject to constraints on the stresses in piezoceramic layers.

Based on the obtained solutions, the structure design of the com-
posite disk has been prepared in order to maximize the suppres-
sion ratio of the maximum thermal stress. It is seen from the
design results that the maximum thermal stress can be reduced by
about 34%, even in the case where constraints are imposed on the
stresses in the piezoceramic layers.

Fig. 4 Distributions of radial and hoop stresses on the upper
surface of each layer after applying the determined voltages
derived under no stress constraints „N=4, M=4, w̄=0.20, and
q̄=0.05…

Fig. 5 Effects of the number and width of electrodes on the
suppression ratio of the maximum thermal stress derived un-
der stress constraints „N=4…

Table 2 Numerical results for the maximum suppression ratio
derived under stress constraints in the case of the same elec-
trode width and interval

N 1 2 3 4

M 2 2 2 2
w̄ 0.300 0.375 0.400 0.375
q̄ 0.200 0.125 0.100 0.125

V̄11�103 0.6222 0.3083 0.1896 0.1438

V̄12�103 −0.2379 −0.1111 0.0197 0.0682

V̄21�103 − 0.4244 0.2649 0.1927

V̄22�103 − −0.1064 −0.0769 −0.0600

V̄31�103 − − 0.2882 0.2145

V̄32�103 − − −0.0678 −0.0586

V̄41�103 − − − 0.1965

V̄42�103 − − − −0.0533

�̄st�103 0.1218 0.1113 0.1140 0.0788
�̄sc −0.1045 −0.0947 −0.0910 −0.0912
�̄ss�103 1.0723 1.8492 2.0000 1.8814
�̄pt�103 4.0000 4.0000 4.0000 4.0000
�̄pc −0.0400 −0.0400 −0.0400 −0.0400
�̄ps�103 1.0723 −1.8495 2.0000 −1.9968
Rmax �%� 19.5 27.1 29.9 29.8

Fig. 6 Distributions of radial and hoop stresses on the upper
surface of each layer after applying the determined voltages
derived under stress constraints „N=4, M=2, w̄=0.375, and q̄
=0.125…
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Table 3 Numerical results for the maximum suppression ratio
derived under stress constraints in the case of different elec-
trode widths and intervals

N 1 2 3 4

M 3 3 3 3
w̄1 0.300 0.400 0.400 0.400
w̄2 0.250 0.175 0.125 0.100
w̄3 0.225 0.300 0.350 0.350
q̄1 0 0 0 0
q̄2 0.100 0.100 0.100 0.125
q̄3 0.025 0.025 0.025 0.025

V̄11�103 0.6394 0.2965 0.2320 0.1894

V̄12�103 −0.1811 −0.0578 0.0656 0.0539

V̄13�103 −0.1651 −0.1300 0.0595 0.0736

V̄21�103 − 0.4363 0.2762 0.2100

V̄22�103 − −0.0850 −0.0638 −0.0567

V̄23�103 − −0.1392 −0.0872 −0.0654

V̄31�103 − − 0.3026 0.2314

V̄32�103 − − −0.0528 −0.0504

V̄33�103 − − −0.0893 −0.0669

V̄41�103 − − − 0.2228

V̄42�103 − − − −0.0423

V̄43�103 − − − −0.0670

�̄st�103 0.1256 0.1141 0.1172 0.1137
�̄sc −0.1035 −0.0911 −0.0862 −0.0861
�̄ss�103 1.1104 1.9550 1.9830 2.0000
�̄pt�103 4.0000 4.0000 4.0000 4.0000
�̄pc −0.0400 −0.0400 −0.0400 −0.0400
�̄ps�103 1.1104 −1.9982 1.9830 2.0000
Rmax �%� 20.3 29.8 33.6 33.7
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Wall Thickness and Radial
Breathing Modes of
Single-Walled Carbon Nanotubes
We postulate that an equivalent continuum structure (ECS) of a single-walled carbon
nanotube (SWCNT) is a hollow cylinder with mean radius and length equal to that of the
SWCNT, and find the thickness of the ECS so that its mechanical response in free vibra-
tions is the same as that of the SWCNT. That is, for mechanical deformations, the ECS is
energetically equivalent to the SWCNT. We use MM3 potential to study axial, torsional,
radial breathing and bending vibrations of several traction free–traction free SWCNTs of
different helicities and diameters and compare them with the corresponding vibrational
modes and frequencies of traction free–traction free ECSs obtained by using the three-
dimensional linear elasticity theory and the finite element analysis (3D-FEA). The con-
sideration of free ends eliminates the effects of boundary conditions and avoids resolving
equivalence between boundary conditions in the analyses of SWCNTs and their ECSs. It
is found that the wall thickness of the ECS (and hence of a SWCNT) is �1 Å and Young’s
modulus of the material of the ECS (and hence of the SWCNT) is �3.3 TPa. Both
quantities are independent of the helicity and the diameter of the SWCNT. We also study
radial breathing mode (RBM) vibrations with the molecular dynamics and the 3D-FEA
simulations, and compare them with experimental findings. Accuracy in the assignment of
spectral lines for RBMs in the Raman spectroscopy is discussed.
�DOI: 10.1115/1.2965370�

1 Introduction
Since their discovery by Iijima �1� there has been significant

interest in characterizing the mechanical properties of both single-
walled and multiwalled carbon nanotubes �SWCNTs and
MWCNTs, respectively�. An inherent difficulty in completing this
task is assigning a thickness to the nanotube. Nearly all studies to
date have assumed that a SWCNT can be obtained by rolling a
graphene sheet into a cylindrical tube about a vector with compo-
nents �m ,n�, and the response of a SWCNT is equivalent to that of
a continuum structure �see Fig. 1� undergoing the same deforma-
tions as the SWCNT. In these studies the thickness of a SWCNT
varies from 0.66 Å to 6.8 Å. While most studies have assumed
the wall thickness to be 3.4 Å �the interlayer separation distance
of graphene sheets in the bulk graphite� some works have taken it
to be less than 3.4 Å �2–12� and a few have taken it to be 6.8 Å
�12,13�. This large variation in thickness gives values of Young’s
modulus ranging from 0.27 TPa for MWCNTs �14� to 5.5 TPa for
SWCNTs �2�.

The mechanical properties of ECSs can be used to deduce the
effective elastic moduli of SWCNTs-reinforced composites from
those of their constituents and their volume fractions by using a
homogenization technique; see, e.g., Ref. �15�. Good agreement
between the computed effective moduli of the composite and the
measured ones will validate the mechanical properties of ECSs
and hence of SWCNTs. This is not pursued here.

Raman spectroscopy is a reliable technique to identify SWCNTs
experimentally. A peak corresponding to a radial breathing mode
�RBM� is a significant spectral line observed during experiments.
The identification of SWCNTs and the determination of their
RBM frequencies using quantum mechanical simulations and
spectroscopy are described in Refs. �16–19�.

Here we analyze the normal mode vibrations of traction free–

traction free SWCNTs of various helicities and diameters using
MM3 potential and compare their vibrational modes and frequen-
cies with the corresponding ones for an ECS derived by using the
three-dimensional theory of elasticity and the finite element analy-
sis �3D-FEA� to ascertain values of the thickness and the elastic
moduli of the ECS and hence of the SWCNT. An advantage of the
3D-FEA is that it incorporates both in-plane and out-of-plane de-
formations, and provides more realistic deformations of the con-
tinuum tube than those obtained by using either a beam or a shell
theory.

Whereas the MM3 �and other� potential includes the effect of
van der Waals forces, which describe the long range interactions
between unbonded atoms, the classical elasticity theory is local. A
good agreement between predictions from molecular dynamics
�MD� simulations and 3D-FEA using linear elasticity theory will
imply that van der Waals forces play a less significant role than
that played by forces between bonded atoms. One can use such
comparisons between the results of the MD and the 3D-FE simu-
lations to delimit the class of deformations for which the effects of
van der Waals forces are negligible.

We describe below the details of the MD and 3D-FE simula-
tions, and the conclusions of our work.

2 Molecular Dynamics, Three-Dimensional Elasticity,
and Finite Element Simulations

The MM3 �20� Class II pairwise potential with both higher-
order expansions and cross-terms and Type 2 �alkene� carbon at-
oms with a bond length of �1.42 Å is used to model SWCNTs in
the computer code TINKER �21�. This potential is appropriate for
carbon nanotubes due to the similarity between graphitic bonds in
the nanotube and the aromatic protein structures for which the
potential is constructed. The MM3 potential is given as Eq. �1� in
which Us, U�, and U� are the primary bond deformation terms
accounting, respectively, for the change in the bond length, the
change in the angle between adjoining bonds, and the twisting of
bonds with respect to the one to which it is bonded. The potential
Us has terms that are quadratic, cubic, and quartic in the change of
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bond lengths, and hence is asymmetric with respect to the de-
crease and increase in the bond length. UvdW is the potential of
nonbonded van der Waals forces, and its expression involving
terms �r� /r�6 and exp�−12r /r�� is different from that in the
Lennard–Jones potential; UvdW is negligible for rv /r greater than
2 where rv is a material parameter and r is the bond length. Us�

and U�s are potentials due to interactions among stretching and
bending deformations, and between stretching and twisting defor-
mations. U��� represents the interactions between different bend-
ing modes. Parameters r, �, and � used in Eq. �1� are shown in
Fig. 2. A subscript, e, on a variable signifies its value in the con-
figuration of minimum potential energy. The total energy of a
body equals the sum of the potentials of all atoms in the body �the
indices i and j in Eq. �1� range over bonded atoms, and the index
k over all atoms�.

U = �
i

�
j

�Us + U� + U� + Us� + U�s + U���� + �
i

�
k

UvdW

Us = 71.94Ks�r − re�2�1 − 2.55�r − re� + � 7
12�2.55�r − re�2�

U� = 0.021914K��� − �e�2�1 − 0.014�� − �e� + 5.6�10�−5�� − �e�2

− 7.0�10�−7�� − �e�3 + 9.0�10�−10�� − �e�4�

U� = �V1/2��1 + cos �� + �V2/2��1 − cos 2�� + �V3/2��1 + cos 3��

Us� = 2.51118Ks���r − re� + �r� − re����� − �e�

U�s = 11.995�K�s/2��r − re��1 + cos 3��

U��� = − 0.021914K����� − �e���� − �e�� and

UvdW = �e�− 2.25�rv/r�6 + 1.84�10�5exp�− 12.0�r/rv��� �1�

The values of constants Ks, K�, V1, V2, V3, �e, r�, Ks�, K�s, and
K��� are given in Ref. �20�. The potential includes contributions
from bond stretching, bending deformations that change angles
between adjoining bonds, torsion, and van der Waals forces.
Moreover, it also accounts for interactions between stretching and
bending, and stretching and twisting. Contributions from different
terms in Eq. �1� for axial tensile and compressive deformations
plotted in Fig. 9 of Ref. �22� reveal that in axial deformations of a
�16,0� SWCNT the angle bend mode of deformation makes a sig-
nificant contribution to the total energy of deformation. Also, de-
formations due to van der Waals forces contribute more to the
total energy of deformation during compressive deformations than
that during tensile deformations. The stretching mode of deforma-

tion contributes most to the energy of deformation during axial
tensile deformations. However, during axial compressive defor-
mations, contributions from angle mode and bond stretching terms
are nearly equal to each other.

The following procedure is adopted to analyze the vibrations of
free-free SWCNTs; here free-free implies that the end surfaces of
a SWCNT and its ECS are traction free. These boundary condi-
tions can be achieved in a laboratory more readily than those of
either simply supported or clamped edges. A SWCNT is first re-
laxed to find the minimum energy configuration at room tempera-
ture to within 0.001 kcal /mol /Å rms without using any cut-off
distance. Thus each atom of the SWCNT can potentially influence
the deformations of other atoms in the tube. However, depending
on the value of rv in Eq. �1� for the van der Walls force potential,
the van der Walls force between two atoms separated by three or
four times the distance between two bonded atoms is negligible as
compared with other forces acting on an atom. It is ensured that
each tube in the relaxed configuration has an aspect ratio �length/
diameter� of about 15, so that when studying vibrations of its ECS
the transverse inertia effects, which couple the thickness, Young’s
modulus, Poisson’s ratio, and the frequency of axial oscillations,
are minimized. Furthermore, a high aspect ratio satisfies the cri-
terion �23� le / j�re for identifying the frequency of a RBM
equivalent to that of an infinitely long tube �e.g., periodic bound-
ary conditions on the unit cell�, where j is the number of half-
wavelengths along the longitudinal direction, and le and re are,
respectively, the length and the mean radius of the relaxed
SWCNT. The length le is the Euclidean distance between planes
of atoms at the two end faces of the relaxed tube, and the radius re
of an �m ,n� SWCNT is given by re=1.1026 ae�m2+n2+mn�1/2

where ae is the bond length in its relaxed configuration. Tubes
with m=n are called armchair, those with either n=0 or m=0 are
called zigzag, and others are called chiral.

The VIBRATE module in computer code TINKER is used to find
frequencies of axial, torsional, radial breathing, and bending
modes of vibrations of free-free SWCNTs of different diameters
and helicities. This module computes the Hessian of the system by
finding second-order derivatives of the MM3 potential with re-
spect to variables appearing in the expression for the potential,
and then diagonalizes the mass weighted Hessian to compute the
eigenvalues and eigenvectors of normal modes. Frequencies com-
puted using TINKER are equated to those of the corresponding
modes of vibration of the ECS using the three-dimensional linear
elasticity theory for isotropic materials and the FE computer code
ABAQUS �24� with 20-node solid elements and one element
through the thickness. The mean diameter and the length of the
continuum cylindrical tube are taken to equal to those of the cor-
responding relaxed SWCNT.

Young’s modulus �E� and the shear modulus �G� for a SWCNT
are obtained by equating the frequencies of axial ��iA� and tor-
sional modes ��iT� of vibration of a SWCNT computed with MD
simulations and the 3D-FEA of the ECS. Frequencies, in rad/s, of
free-free tubes from the elasticity theory �23� are given by

�iA = i��le�−1�E/��1/2 and �iT = i��le�−1�G/��1/2

for i = 1,2,3, . . . �2�

where �iA and �iT are, respectively, the frequency of the ith axial
and torsional modes of vibration of the ECS. The mass density ���
is obtained by dividing the total mass of carbon atoms in the
SWCNT by the volume of corresponding ECS with thickness as a
variable. Poisson’s ratio ��� of the material of the ECS is ex-
pressed in terms of values of the ith frequencies of the axial and
the torsional vibrations obtained with the MD simulations as

� = 0.5��iA/�iT�2 − 1 �3�

which holds because E=2G�1+�� for an isotropic linear elastic
material.

Fig. 1 Cylindrical tube equivalent in mechanical response to a
SWCNT

Fig. 2 Depictions of variables r, �, and � used in the MM3
potential
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We note that a necessary condition for the existence of an ECS
is that the frequency of the ith axial �or torsional� mode of vibra-
tion of a SWCNT derived from the MD simulations equals i times
that of the first mode.

The thickness of the ECS is varied until the frequencies of the
first three modes of axial, torsional, and bending modes from the
MD simulations and the 3D-FEA match with each other within the
prescribed tolerance of 1.0%. It should be noted that the variation
in thickness does not alter the ratio �E /G�; therefore, the bending
mode frequency determines the termination of the iteration pro-
cess for finding the thickness of the ECS. A good match between
frequencies of the RBMs validates the thickness of the ECS.

3 Results and Discussion
Simulations for several SWCNTs have been carried out to de-

lineate the dependence of material moduli and the wall thickness
on their diameters and helicities. The afore-stated procedure gave
a wall thickness of �1 Å. For this value of the wall thickness,
frequencies of vibrational modes from MD and 3D-FE simula-
tions differed from each other by less than 1.0%. Figures
3�b�–3�d� illustrate the mode shapes and the corresponding fre-
quencies from MD and 3D-FE simulations for bending modes for
the �5,5� SWCNT. It can be observed that the flaring �i.e., out-of-
plane deformations� at the end faces of the SWCNT marked in red
circles in Fig. 3�d� is captured in the 3D-FEA but not in a beam or
in a shell model of a SWCNT. For a SWCNT of small aspect
ratio, the energy of deformation associated with end flaring may
be significant. Tables 1 and 2 list the number of carbon atoms in a

Table 1 SWCNT parameters, frequencies „Hz/speed of light in cm/s… from molecular dynamics „MD… and finite element „FE…
simulations, and values of elastic moduli

Tube

Geometry/atoms/
finite elements
�r0 , l0� �Å� a

�re , le� �Å� a

nC,N e
No.f

MD
�MM3 potential�

	E

�TPa�

	�

	G


�TPa�

3D-FEA
�% error� with respect to MD results

T b

�cm−1�
A c

�cm−1�
B d

�cm−1� T b A c B d

�5,0� �1.957,59.640�
�1.869,55.425�

280, 660

1 37.546 58.006 9.823 3.182
0.193
1.330

0.165 0.207 0.657
2 74.994 115.842 25.855 0.043 0.131 0.181
3 112.243 173.311 47.694 0.178 0.001 0.288

�5,5� �3.390, 103.299�
�3.222, 97.043�

840, 2037

1 22.270 33.730 5.513 3.271
0.144
1.430

0.009 0.151 0.595
2 44.541 67.384 14.472 0.011 0.076 0.550
3 66.818 100.878 26.624 0.022 0.054 0.519

�10,0� �3.915, 119.280�
�3.716, 112.969�

1120, 2712

1 18.732 29.633 4.802 3.401
0.251
1.361

0.053 0.135 0.249
2 37.464 59.218 12.589 0.053 0.162 0.269
3 56.161 88.698 23.123 0.011 0.210 0.302

�9,6� �5.119, 167.120�
�4.856, 158.100�

2052, 5056

1 13.622 20.893 3.167 3.317
0.175
1.422

0.044 0.115 0.095
2 27.244 41.753 8.355 0.048 0.079 0.143
3 40.866 62.542 15.462 0.047 0.021 0.187

�8,8� �5.425, 164.787�
�5.146, 155.261�

2144, 5115

1 13.833 21.161 3.433 3.294
0.167
1.411

0.014 0.132 0.464
2 27.667 42.284 9.006 0.011 0.090 0.464
3 41.503 63.321 16.557 0.007 0.011 0.451

�14,2� �5.911, 182.253�
�5.606, 172.808�

2584, 6228

1 12.282 19.276 3.075 3.367
0.229
1.369

0.008 0.119 0.033
2 24.561 38.522 8.071 0.024 0.130 0.074
3 36.840 57.710 14.846 0.027 0.160 0.114

�9,9� �6.103, 184.463�
�5.787, 173.879�

2700, 6612

1 12.319 18.902 3.076 3.296
0.174
1.403

0.016 0.132 0.453
2 24.637 37.769 8.069 0.024 0.093 0.407
3 36.956 56.562 14.825 0.022 0.027 0.396

�16,0� �6.264, 191.700�
�5.939, 181.303�

2880, 6878

1 11.633 18.329 2.943 3.360
0.239
1.356

0.000 0.126 0.271
2 23.263 36.631 7.719 0.009 0.148 0.271
3 34.891 54.871 14.185 0.020 0.184 0.288

�10,10� �6.780, 204.139�
�6.429, 192.503�

3320, 8106

1 11.101 17.077 2.788 3.297
0.180
1.396

0.027 0.129 0.393
2 22.202 34.124 7.309 0.023 0.100 0.368
3 33.304 51.104 13.422 0.021 0.041 0.356

ar and l are the radius and the length of a SWCNT, and subscripts 0 and e refer to the initial and the relaxed configurations, respectively.
bTorsional mode.
cAxial mode.
dBending mode.
enC and N are, respectively, the number of carbon atoms in the SWCNT, and the number of 20-node hexahedral elements into which the equivalent continuum tube is
discretized.
fMode number.

Fig. 3 Vibrational modes of free-free „5,5… SWCNT: „a… relaxed
tube, „b… first bending mode, „c… second bending mode, and „d…
third bending mode with zoomed ends indicating the presence
of out-of-plane deformations
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SWCNT and 20-node brick elements in its ECS, frequencies of
first three axial, torsional, and bending modes of vibration from
the two approaches, and computed values of Young’s modulus,
Poisson’s ratio, and the shear modulus with the wall thickness of
1 Å. It can be concluded that the value of Young’s modulus of a
SWCNT varies from 3.182 TPa to 3.401 TPa, has mean and me-
dian values of 3.312 TPa and 3.303 TPa, and has standard devia-
tion of 0.046 TPa. The largest and the smallest values of E are for
the �10,0� and �5,0� SWCNTs, respectively. Young’s modulus is
independent of the tube diameter and its helicity within an error of
6.4%. With an increase in the diameter of the SWCNT, Poisson’s
ratio converges to 0.20 for armchair tubes, to 0.23 for zigzag
tubes, and to 0.21 for chiral tubes. It varies from the lowest value
of 0.144 for the �5,5� SWCNT to the highest value of 0.251 for the
�10,0� SWCNT, and the mean, the median, and the standard de-
viations are, respectively, 0.203, 0.201, and 0.029.

For the SWCNTs studied herein, the frequencies of the first
bending mode from MD simulations, Euler’s beam theory �EBT�
�23�, and FE simulations are compared in Table 3 for wall thick-
ness of 1 Å. It is observed that the frequencies from the EBT
have on average 3% error as compared with those from MD simu-
lations. If one extracts the thickness by equating the frequencies
given by the MD simulations and the EBT then one gets an imagi-
nary value of the wall thickness. However, this is not the case for
the thickness computed using the frequencies obtained from the
3D elasticity theory. It suggests that the EBT theory may not be
adequate to model the vibrations of SWCNTs. Consequently val-

Table 2 SWCNT parameters, frequencies „Hz/speed of light in cm/s… from molecular dynamics „MD… and finite element „FE…
simulations, and values of elastic moduli

Tube

Geometry/atoms/
finite elements
�r0 , l0� �Å� a

�re , le� �Å� a

nC,N e
No.f

MD
�MM3 potential�

	E

�TPa�

	�

	G


�TPa�

3D-FEA
�% error� with respect to MD results

T b

�cm−1�
A c

�cm−1�
B d

�cm−1� T b A c B d

�15,5� �7.058, 215.035�
�6.691, 203.737�

3640, 8976

1 10.443 16.270 2.624 3.337
0.211
1.378

0.010 0.123 0.000
2 20.886 32.515 6.883 0.010 0.123 0.015
3 31.328 48.701 12.648 0.013 0.111 0.055

�11,11� �7.459, 223.816�
�7.071, 211.130�

4004, 9706

1 10.103 15.574 2.549 3.303
0.187
1.391

0.020 0.045 0.430
2 20.206 31.122 6.680 0.020 0.026 0.403
3 30.309 46.722 12.263 0.020 0.221 0.390

�20,0� �7.830, 238.560�
�7.422, 222.966�

4480, 10704

1 9.346 14.691 2.367 3.304
0.233
1.356

0.000 0.129 0.713
2 18.691 29.359 6.207 0.005 0.143 0.672
3 28.034 43.977 11.402 0.014 0.175 0.645

�19,3� �8.090, 264.085�
�7.666, 250.557�

5124, 12299

1 8.464 13.258 2.001 3.349
0.225
1.367

0.738 0.829 0.908
2 16.928 26.498 5.277 0.732 0.837 0.841
3 25.390 39.697 9.760 0.726 9.163 0.795

�13,13� �8.815, 265.627�
�8.355, 250.718�

5616, 13554

1 8.484 13.120 2.137 3.299
0.193
1.383

0.000 0.130 0.280
2 16.969 26.217 5.602 0.000 0.107 0.267
3 25.453 39.265 10.288 0.000 0.071 0.242

�17,9� �8.953, 292.268�
�8.485, 277.197�

6276, 14958

1 7.689 11.938 1.802 3.329
0.203
1.384

0.000 0.109 0.167
2 15.379 23.858 4.754 0.000 0.096 0.147
3 23.069 35.742 8.796 0.004 0.078 0.102

�23,0� �9.004, 272.640�
�8.534, 255.246�

5888, 14025

1 8.177 12.837 2.080 3.301
0.230
1.370

0.000 0.125 0.288
2 16.354 25.655 5.451 0.006 0.144 0.147
3 24.530 38.428 10.009 0.000 0.172 0.150

�15,15� �10.171, 309.898�
�9.640, 292.642�

7560, 18166

1 7.255 11.244 1.811 3.302
0.198
1.377

0.041 0.098 0.275
2 14.511 22.488 4.753 0.041 0.165 0.063
3 21.768 33.654 8.738 0.032 0.054 0.240

�26,0� �10.179, 315.240�
�9.646, 295.587�

7696, 18352

1 7.073 11.092 1.758 3.301
0.228
1.369

0.028 0.117 0.114
2 14.145 22.168 4.618 0.021 0.136 0.108
3 21.217 33.207 8.500 0.019 0.151 0.118

ar and l are the radius and the length of a SWCNT, and subscripts 0 and e refer to the initial and the relaxed configurations, respectively.
bTorsional mode.
cAxial mode.
dBending mode.
enC and N are, respectively, the number of carbon atoms in the SWCNT, and the number of 20-node hexahedral elements into which the equivalent continuum tube is
discretized.
fMode number.

Table 3 Comparison of frequencies of the first bending mode
from 3D-FEA and EBT with those from MD simulations

Tube

Molecular
dynamics

�cm−1�
3D-FEA
�% error�

EBT
�% error�

�5,0� 9.823 0.657 3.763
�5,5� 5.513 0.595 3.373
�10,0� 4.802 0.249 3.034
�9,6� 3.167 0.095 2.475
�8,8� 3.433 0.464 3.245
�14,2� 3.075 0.033 2.715
�9,9� 3.076 0.453 3.252
�16,0� 2.943 0.271 3.000

�10,10� 2.788 0.393 3.207
�15,5� 2.624 0.000 2.726
�11,11� 2.549 0.430 3.272
�20,0� 2.367 0.713 4.172
�19,3� 2.001 0.908 1.480

�13,13� 2.137 0.280 3.098
�17,9� 1.802 0.167 2.200
�23,0� 2.080 0.288 3.987

�15,15� 1.811 0.275 3.051
�26,0� 1.758 0.114 3.727

Mean % Error 0.355 3.099
Maximum % Error 0.908 4.172
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ues of Young’s modulus predicted �25� using experimental fre-
quencies of oscillations coupled with the EBT may not be very
reliable.

Frequencies �Hz/speed of light in cm/s� of RBMs computed
from the MD and the 3D-FE simulations are listed in Table 4 for
j=1 along with those reported in literature using theoretical and
spectroscopic analyses. It is observed that the frequencies of
RBMs for SWCNTs from MD and of ECSs from FE simulations
agree well with each other, and are in good agreement with those
obtained by other investigators thus validating our computed
value of the wall thickness of the ECS. In the absence of geomet-
ric details of SWCNTs used in experimental studies one cannot
discuss the sources of discrepancy between the simulation and the
experimental results. Simulations can incorporate periodic bound-
ary conditions on a unit cell thus mimicking an infinitely long
tube, while experiments are conducted with the finite length tubes.
Therefore it is appropriate in experimental studies that the crite-
rion, le / j�re, be met for identifying the frequencies of RBMs.
Furthermore, it is observed that axisymmetric modes for j	1 are
closely packed in the phonon spectrum �from both MD and 3D-FE
simulations�. Therefore the assignment of spectral lines in experi-
ments for RBMs may be difficult and have an error due to not
satisfying le / j�re. Figure 4 shows axisymmetric modes for the
�8,8� tube for j=1 and 2 from MD and 3D-FE simulations. We
note that the experimental value, 211 cm−1, of the frequency of
the RBM listed in Table 4 for the �8,8� SWCNT corresponds to
the one from simulations with j
1.

Based on the results of compression of a bundle of SWCNTs by
external hydrostatic pressure, it has been proposed �7� that the
wall thickness of a SWCNT must be less than the theoretical
diameter of a carbon atom �1.42 Å�. Our work based on dynami-
cal quantities predicts the wall thickness to be �1 Å.

4 Remarks
The values of Young’s modulus, the shear modulus, and Pois-

son’s ratio computed herein from MD simulations of vibrations
differ from those reported by other investigators mainly due to the
different value of the wall thickness. Whereas we have deduced
the value of the thickness of the ECS by equating the frequencies

of bending modes of vibration, most other studies have assumed it
a priori. Using MM simulations with the MM3 potential, Sears
and Batra �22� found that for the �16,0� SWCNT

E =
1.18 � 10−6

2�reh
Pa

where h is the wall thickness of the ECS. Substitution for re
=5.939 Å and h=1 Å gives E=3.162 TPa, which compares well
with the 3.36 TPa obtained herein. Thus simulations of static de-
formations and vibrations give values of E with a difference of
6%. The values of G for the �16,0� SWCNT computed from Sears
and Batra’s �22� MM simulations and our present work are 1.298
TPa and 1.356 TPa, respectively, and have a difference of about
4.3%.

Whereas we have derived the elastic moduli of the ECS by
comparing the results of MD simulations with those of FEA using
the 3D elasticity theory for isotropic materials, Huang et al. �26�,
Wu et al. �27�, and Peng et al. �28� have used the Brenner poten-
tial to derive elastic properties of a nonlinear elastic shell and
found its stiffness in tension, bending, and torsion. They have also
studied deformations of the shell due to radial loads applied on the
inner and on the outer surfaces of the shell, and its buckling due to
axial loads. The Brenner potential includes energies due to bond
stretching, and bending induced by changes in angles between
adjacent bonds. They �26–28� have shown that the material of the
shell should be modeled as orthotropic. For atomic spacing, �,
tube radius, R, and characteristic length of the continuum struc-
ture, L, they �26–28� have estimated errors in the results from
shell theories as a function of � /R and � /L. For the SWCNTs
studied herein, � /L= �15 and the error in the ECS is only a
function of � /R. For the error to be of O��� /R�3�, a SWCNT
cannot be represented by a conventional shell theory because con-
stitutive relations involve coupling between tension and curvature,
and between bending and axial strain. For the error to be
O��� /R�2�, the tension and bending rigidities of SWCNTs can be
represented by an elastic orthotropic thin shell, but not by the
thickness and the elastic modulus. Only for the error of O��� /R��,
a universal constant shell thickness can be defined and a SWCNT
can be modeled as a thin shell of uniform thickness and made of
an isotropic elastic material. In the present work, we have used
FEA results from the 3D linear elasticity theory of isotropic ma-
terials to deduce the elastic moduli and the uniform thickness of
the ECS. Also, the MM3 potential includes energies due to tor-
sion, and coupling between twisting and stretching, bending and
stretching, and van der Waals forces. Thus, it is not easy to esti-
mate errors in the linear elastic cylindrical tube comprised of an
isotropic elastic material that is equivalent to the SWCNT.

Batra and Sears �29� proposed that the ECS of a SWCNT be a
cylindrical tube of mean radius equal to that of the SWCNT, and

Table 4 Frequencies of radial breathing modes for SWCNTs „N.A.=not available… from MD and 3D-FE simulations, and values
reported in literature

Tube

Molecular
dynamics

�cm−1�

Present
3D-FEA
�cm−1� �% error� with respect to MD results

Rao et al. �16�
�cm−1�

Lawler et al. �17�
�cm−1�

Kurti et al. �18�
�cm−1�

Kuzmany et al. �19�
�cm−1�
�Expt.�

�5,0� 568.847 569.857 0.178 N.A. 602 N.A. N.A.
�5,5� 332.881 328.515 1.312 N.A. 341 N.A. N.A.
�10,0� 290.463 298.025 2.603 N.A. 294 298 N.A.
�8,8� 209.008 206.493 1.203 206 210 219 211
�14,2� 192.508 194.731 1.155 N.A. 191 N.A. N.A.
�9,9� 185.896 183.816 1.119 183 187 195 195
�16,0� 181.747 183.790 1.124 N.A. 177 188 �fitted� 185
�10,10� 167.377 165.621 1.049 165 169 175 177
�11,11� 152.207 150.904 0.856 150 N.A. 159 162
�20,0� 145.363 144.598 0.526 N.A. N.A. 150 N.A.

Maximum % error 2.6

Fig. 4 Radial breathing modes of free-free „8,8… SWCNT corre-
sponding to „a… j=1 and „b… j=2
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be made of a transversely isotropic material with the axis of trans-
verse isotropy along the radial direction. They studied the radial
deformations of the ECS and of the SWCNT due to pressures
applied on the inner and on the outer surfaces, and found that
Young’s modulus in the radial direction is nearly one-fourth of
that in the axial direction. If a similar assumption were made here,
then the presently computed value of E is for Young’s modulus in
the axial and circumferential directions, and the values of Pois-
son’s ratio and the shear modulus in the �z-plane have been found.
Here z-axis is along the axis of the tube and � denotes the angular
position of a point. In the vibration modes studied, displacements
only in one direction are dominant. However, we cannot find the
remaining two elastic moduli of the transversely isotropic linear
elastic material from the vibration modes studied here.

We note that Wang and Zhang �30� have recently summarized
the values of wall thickness of a SWCNT obtained by different
research groups. Also, Sears and Batra �31� have used the MM3
potential to study buckling, due to axial compression, of single-
and mult-walled CNTs.

5 Conclusions
We conclude that SWCNTs of different chiralities can be re-

garded as �1 Å thick with the axial Young’s modulus of between
3.2 TPa and 3.4 TPa with a standard deviation of 0.046. The
values of Poisson’s ratio range between 0.144 and 0.251, and their
mean and standard deviations are 0.203 and 0.029, respectively.
The frequencies of radial breathing modes of tubes of different
helicities from MD and 3D-FEA simulations are found to agree
well with each other with a maximum difference of 2.6%. These
are close to those derived by other researchers either from quan-
tum mechanical simulations or experimental studies. The results
presented herein have important consequences in designing
SWCNT based nanodevices.
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Impact of Viscoplastic Bodies:
Dissipation and Restitution
A viscoplastic coefficient of restitution (COR) that accounts for nonfrictional sources of
energy dissipation is determined for direct collision between hard compliant bodies. This
COR incorporates effects of both irreversible elastic-plastic material (rate-independent)
and viscoelastic (rate-dependent) behaviors. The COR is calculated based on a modified
Maxwell model for compliance of the bodies in the small deforming region around the
initial contact point. Modifications to the Maxwell model incorporate the effects of plas-
ticity and viscoelasticity, so the calculated COR gives a value that considers both hys-
teresis due to the plastic deformation and viscoelastic (rate-dependent) sources of energy
dissipation during collision. �DOI: 10.1115/1.2965371�

Keywords: impact, coefficient restitution, viscoplastic dissipation, bilinear Maxwell
model

1 Introduction
The coefficient of restitution �COR� is an important impact pa-

rameter characterizing nonfrictional energy dissipation during the
collision. The concept of a COR was first expressed as the New-
tonian �kinematic� COR, then as the Poisson �kinetic� COR, and
finally as an energetic COR �1�. These definitions of COR are
equivalent unless there is friction and the direction of sliding
changes during the collision; in this case, only the energetic COR
correctly accounts for all sources of energy dissipation.

Coaplen et al. �2� introduced the composite COR to represent
the energy dissipated during a collision between two hard bodies
with dissimilar material properties. Their development assumed
rate-independent behavior of the compliance. The energy losses
during collision that are associated with the normal component of
relative motion were related to internal dissipation �elastic-plastic
deformation�. They calculated the composite COR based on �a� an
elastic compliance of the contact region and �b� an energetic co-
efficient of restitution for each body CORi, where i=1,2 as mea-
sured in a self-similar collision.

The effect of viscoelasticity or rate-dependence in the compli-
ance of colliding bodies is another source of dissipation during
collision. This effect can be significant in understanding the dy-
namic behavior of many types of colliding bodies. Butcher and
Segalman �3� characterized impact using elementary vibration
concepts, which assume that the compliance can be represented by
a linear elastic spring and a linear dashpot that dissipates energy.
Their studies also included higher-order viscoelastic models.
Other research regarding impact between bodies with viscoelastic
compliance have been presented by Hunt and Crossley �4� and
Atanackovic and Spasic �5�.

Previous analyses of a COR for collision of compliant bodies
have investigated either inelastic or rate-dependent behaviors. The
present paper combines these effects to obtain a viscoplastic
COR e�. The basis of the analysis is a nonlinear Maxwell model.
In contrast with the Kelvin–Voight viscoelastic model �4�, this
modified Maxwell model eliminates any problem of discontinuity
of the contact force at incidence �t=0�.

2 Viscoplastic (Modified Maxwell) Compliance
This analysis for velocity changes that occur during direct col-

lision between two relatively hard bodies of masses M1 and M2,

respectively, employs a lumped-parameter representation for the
compliance of a small contact region around the initial contact
point C �Fig. 1�. This representation assumes that all deformation
occurs in a negligibly small region around C. The remainder of
the bodies are assumed to be rigid. The collision is composed of a
period of compression wherein the bodies are approaching each
other followed by a period of restitution wherein they separate.
The compression period starts at incidence and ends when the
normal relative velocity of the colliding bodies vanishes. The sub-
sequent period of restitution terminates at separation.

The compliance of the small deforming region around C is
represented by a bilinear spring �elastic-plastic element� in series
with a linear dashpot �viscous element� with damping constant c.
Rather than a linear elastic spring �as in viscoelastic compliance�,
a bilinear elastic-plastic spring is used to represent energy loss due
to plastic deformation �Fig. 2�. The ratio of spring stiffness during
restitution to stiffness during compression is �−2 such that the
ratio of work done by the elastic-plastic element during restitution
to that done during compression is −�2. Hence � is termed the
plastic loss factor. This represents rate-independent internal en-
ergy dissipation �1� and is in addition to energy dissipated by the
viscous element.1 The total work done on the deforming region
during compression equals the work done to transform kinetic
energy into internal energy, while during restitution, the total work
equals the work recovered from the deformable region as it trans-
forms internal energy into kinetic energy of relative motion.

The normal component of the relative displacement of the bod-
ies u gives rise to the normal contact force F. This nonlinear
Maxwell model gives a normal contact force between the bodies
that is equal to the force acting on either the spring or the dashpot.
Relative displacement of the dashpot is defined as y relative to the
contact surface. The formulation of the equation of normal motion
for this system with viscoplastic compliance is formulated for
successive phases of compression and restitution.

3 Equation of Motion During Compression
The contact force acting on the colliding bodies during com-

pression is

F = − �z = − cẏ �1a�

where the extension of the spring z is given as
Contributed by the Applied Mechanics Division of ASME for publication in the
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1For rate-independent compliance where c→� �i.e., the dashpot behaves as a
rigid link�, the plastic loss factor � equals the COR e�.
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z = �u − y� �1b�

Applying Newton’s law of motion on the body gives

mü = − �z �1c�

where an effective mass m= �M1
−1+M2

−1�−1. Differentiating Eq.
�1a� once and Eq. �1b� twice, then substituting these into Eq. �1c�
gives an equation of motion in terms of the spring extension.

z̈ + 2��0ż + �0
2z = 0 �2a�

where the damping factor � and the undamped natural frequency
�0 are defined as follows:2

� =
m�0

2c
�2b�

�0
2 =

�

m
�2c�

The initial conditions for a direct collision between bodies collid-
ing at an initial normal relative velocity of v0 are

u�0� = z�0� = y�0� = 0

u̇�0� = ż�0� = − v0, ẏ�0� = 0

For cases where the damping factor ��1, the equation of motion
�Eq. �2a�� has a solution,

z�t� = −
v0

�d
e−��0t sin��dt� �3�

where the damped resonant frequency �d=�0
�1−�2. Expressing

the contact force �using Eqs. �1a� and �3�� as a nondimensional
quantity gives

F

m�0v0
=

1
�1 − �2

e−��0t sin��dt� �4�

Having solved for the displacement of the spring, the normal rela-
tive velocity of the bodies is then

u̇�t� = −
v0

�d
e−��0t���0 sin��dt� + �d cos��dt�� �5�

The impulse acting on the colliding bodies at any time t during an
initial period of compression is obtained as the change in linear
relative momentum of the bodies.

p�t� = m�u̇�t� − u̇�0�� �6�

At any time during compression �0� t� tc�, the impulse acting on
the system is

p�t� = mv0�1 − e−��0t� �

�1 − �2
sin��dt� + cos��dt��	 �7�

The transition from compression to restitution occurs at time tc
when the normal relative velocity vanishes, i.e., when the normal
impulse has eliminated the initial normal relative momentum.

pc = p�tc� = mv0 �8�

This gives the nondimensional time of transition from compres-
sion to restitution as

�0tc =
1

�1 − �2
�� − tan−1
�1 − �2

�
�� �9�

At the time of transition, the relative displacement zc and the
relative velocity żc of the spring are given by

zc = z�tc� = −
v0

�0
e−��0tc �10a�

żc = ż�tc� = 2v0�e−��0tc �10b�

4 Equation of Motion During Restitution
The normal force acting between the bodies during the restitu-

tion is given by

F�t� = −
�

�2z − �
1 −
1

�2�zc = − cẏ �11�

The equation of motion for the spring element during the restitu-
tion is expressed as

z̈ +
�

�2c
ż +

�

�2m
z = −

�

m

1 −

1

�2�zc �12�

4.1 Case I: ��� . For ���, Eq. �12� gives a superposition of
complementary and particular solutions for the displacement of
the spring as

2Although the equation of motion �Eq. �2a�� is conveniently written in a form
similar to that of the Kelvin–Voight model �3�, the physics are completely different
�Eq. �2b�� since the damping factor � is inversely proportional to the damping con-
stant c.

Fig. 1 Viscoplastic compliance for impact between hard bod-
ies with local compliance

Fig. 2 Force-deflection relations for bilinear elastic-plastic el-
ement representing viscoplastic compliance of the contact re-
gion. Stiffness of the elastic-plastic element increases from �
to ��−2 at the instant of maximum compression giving a ratio of
energy dissipation from hysteresis to maximum energy stored
in elastic-plastic element �2.
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z�t� = 	e−��/�2��0t sin
 1

�
�1 −

�2

�2�0t + 
� + �1 − �2�zc

�13a�

where the coefficient 	��0 ,� ,� ,v0� and the phase angle 
 are
defined as follows:

	 =
v0�2e��/�2��1−�2��0tc

�0�1 −
�2

�2

�13b�


 = tan−1
−
�

�
�1 −

�2

�2� −
1

�
�1 −

�2

�2�0tc �13c�

The end of restitution is determined by the condition that the
normal contact force vanishes.

F�tf� = −
�

�2	e−��/�2��0tf sin
 1

�
�1 −

�2

�2�0tf + 
� = 0 �14�

Equation �14� gives the nondimensional time for the end of the
restitution period �0tf as

�0tf = −
�


�1 −
�2

�2

�15�

The normal impulse that drives the colliding bodies apart during
restitution �tc� t� tf� is given as

p�t� = 	m�0e−��/�2��0t� �

�2sin
 1

�
�1 −

�2

�2�0t + 
�
+

1

�
�1 −

�2

�2cos
 1

�
�1 −

�2

�2�0t + 
�� + mv0 �16�

4.2 Case II: ����1 . For ����1, Eq. �12� gives a super-
position of complementary and particular solutions for the dis-
placement of the spring as

z�t� = −
v0�2

2�0�1 −
�2

�2

e−��0tc�
1 +�1 −
�2

�2 �

�e−��/�2��0�1+�1−��2/�2���0�t−tc� − 
1 −�1 −
�2

�2 �
�e−��/�2��1−�1−��2/�2���0�t−tc�	 + �1 − �2�zc �17�

The end of restitution is determined by the condition that the
normal contact force vanishes, which gives the nondimensional
time of separation as

�0tf = −
�2

2��1 −
�2

�2

ln�
1 −�1 −
�2

�2 �

1 +�1 −

�2

�2 �
e−2��/�2��1−��2/�2��0tc

�18�

The normal impulse that drives the colliding bodies apart during
restitution is given as

p�t� = −
mv0�2

2��1 −
�2

�2

e−��0tc�e−��/�2��1+�1−��2/�2���0�t−tc�

− e−��/�2��1−�1−��2/�2���0�t−tc�� + mv0 �19�

During collision between bodies with rate-dependent material
properties, the transition from compression to restitution occurs
after the time of maximum compressive force �Fig. 3�. The period
between the maximum force and the transition time tc increases as
the damping factor � increases. Furthermore, the maximum con-
tact force decreases and the contact period increases with increas-
ing damping factor.

For bilinear modeling of internal plastic deformation, the force
versus the time profiles for viscoplastic compliance differs from
those for viscoelastic compliance only during the restitution phase
�Fig. 4�. With this modeling, the duration of the restitution phase
decreases as the plastic loss factor � decreases, i.e., as energy
dissipated by plastic deformation increases.

5 Work of Contact Force
The work done by the normal contact force during the compres-

sion and the restitution phases can be calculated separately for
elastic-plastic and viscous elements. The work done by the vis-
cous element during compression WVC is defined as follows:

WVC =�
0

tc

Fẏdt,
WVC

1

2
mv0

2

= e−2��0tc − 1 �20a�

and likewise the work done by the bilinear elastic-plastic element
during compression WSC is obtained as follows:

Fig. 3 Contact force for impact with viscoelastic compliance
�=1 for different values of the damping factor �. Note that �
=1, �=0 „i.e., damping constant c\�… represents a perfectly
elastic collision with no energy dissipation.

Fig. 4 Contact force profile for viscoplastic compliance with a
damping factor �=1/4
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WSC =�
0

tc

Fżdt

WSC

1

2
mv0

2

= −
1

1 − �2e−2��0tc sin2��dtc� �20b�

The total work WTC by the system during compression is the sum
of the work done by the viscous and elastic-plastic elements,

WTC =�
0

tc

Fu̇dt =�
0

tc

F�ż + ẏ�dt

WTC

1

2
mv0

2

= e−2��0tc�1 −
1

1 − �2sin2��dtc�	 − 1 = − 1 �20c�

During compression, both elastic-plastic and viscous elements
do negative partial work on these colliding bodies. This reduces
the kinetic energy of the system �Fig. 5�. The contact force does
work on the elastic-plastic element by transforming part of the
initial kinetic energy of the relative motion into internal energy.
The viscous force always opposes the relative motion of the col-
liding bodies and thus dissipates energy during collision. The en-
ergy dissipated by the viscous element during compression is an
increasing part of the total dissipation as the damping factor �
increases. At the end of compression, the total work equals the

initial kinetic energy of the normal relative motion, i.e., the nor-
mal relative velocity has been brought to a halt. As �→1, the total
work in the system is governed by the work done on the viscous
element. All the kinetic energy of the normal relative motion is
dissipated during compression.

The work done by the viscous element during restitution WVR
in Case I ����� is expressed as follows:

WVR

1

2
mv0

2

= − �	2�0
2

v0
2

e−2��/�2��0t

�4 � � �cos2 
�− 2� sin2
 1

�
�1 −

�2

�2�0t� − ��1 −
�2

�2sin
 2

�
�1 −

�2

�2�0t� −
��2 − �2�

�
�

− sin 2
�� sin
 2

�
�1 −

�2

�2�0t� + ��1 −
�2

�2cos
 2

�
�1 −

�2

�2�0t�� + sin2 
�− 2� cos2
 1

�
�1 −

�2

�2�0t�
+ ��1 −

�2

�2sin
 2

�
�1 −

�2

�2�0t� −
��2 − �2�

�
�	�

tc

tf

�21a�

and likewise, the work done by the bilinear elastic-plastic element
during restitution WSR is expressed as follows:

WSR

1

2
mv0

2

= −
WVR

mv0
2 − �	2�0

2

v0
2

e−2��/�2��0t

2�3 �1 −
�2

�2

� �sin 2
���1 −
�2

�2sin
 2

�
�1 −

�2

�2�0t�
− � cos
 2

�
�1 −

�2

�2�0t��
− cos 2
�� sin
 2

�
�1 −

�2

�2�0t�
+ ��1 −

�2

�2cos
 2

�
�1 −

�2

�2�0t��	�
tc

tf

�21b�

During restitution, the normal contact force does negative work on
the elastic-plastic element and positive work on the viscous ele-
ment �Fig. 6�, i.e., the spring extends while the dashpot continues
to compress. The total work on the colliding bodies during resti-

tution has the opposite sign of work done on the compliant ele-
ments and is given by the sum of the work on the elements. Thus,

Fig. 6 Distribution of the work done during restitution by vis-
cous and elastic-plastic elements as a function of damping fac-
tor � for the viscoplastic compliance „Case I: �<�…. Also shown
are curves for the total work by the system.

Fig. 5 Distribution of the work done during compression by
viscous and elastic-plastic elements as a function of damping
factor �. The total work equals the initial kinetic energy of nor-
mal relative motion.
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during restitution there is positive work done on the colliding
bodies and a net increase in kinetic energy of the relative motion
for the system. The total work on the colliding bodies during
restitution decreases as the damping factor � increases. It also
decreases with decreasing value of plastic loss factor �.

5.1 Kinetic COR e� . For collinear collision, the idea of a
viscoplastic COR e� for energy losses during collision between
bodies whose contact compliance can be represented as inelastic
and rate-dependent can be expressed using the kinetic definition
of COR. The kinetic COR is defined as the ratio of normal im-
pulse during restitution to the normal impulse during compres-
sion. Thus, an expression for the viscoplastic COR e� is as fol-
lows.

In Case I: ���,

e� =
pf − pc

pc
= �e��/�2���1−�2��0tc−�0tf� �22a�

In Case II: ����1,

e� = −
�2

2��1 −
�2

�2

e−��0tc�e−��/�2��1+�1−��2/�2���0�tf−tc�

− e−��/�2��1−�1−��2/�2���0�tf−tc�� �22b�
For a direct collision, this analytical expression for kinetic COR is
equivalent to the energetic COR.

In the absence of viscous damping �i.e., when �=0�, the visco-
plastic COR e� equals the plastic loss factor � �Fig. 7�. Further-
more, the viscoplastic COR e� decreases with increasing value of
the damping factor � �i.e., decreasing c�. Irrespective of internal
plastic deformation, the viscoplastic COR e� asymptotically ap-
proaches zero at large values of the damping factor ���0.8�.

6 Discussion
Throughout this analysis we considered only ��1 �c

�m�0 /2�, a limit that is necessary for contact force to provide
sufficient impulse to bring the initial normal relative velocity at
the contact point to a halt during compression. For ��1, as the
damping factor �→1, the period of compression increases without
bound �see Eq. �9��. Also, as �→1 the elastic stored energy de-
creases toward zero at the end of compression �see Fig. 5�, i.e., as
�→1, at the end of compression there is negligibly small stored
energy that remains to drive the bodies apart during restitution.
Hence, the present model represents the dynamics of impact only
if c�m�0 /2, i.e., ��1.

The concept of an energetic COR has been extended to model
dissipative collision for bodies with both rate-independent plastic
and rate-dependent viscous energy dissipation. An expression for
the viscoplastic COR e� has been presented for direct collision of
collinear bodies with local contact regions that exhibit both plastic
deformation and rate-dependence. This COR is not a simple sum
of the parameters associated with internal inelastic behavior and
rate-dependent effects but rather is represented by an equation that
depends on the undamped natural frequency �0, the plastic loss
factor �, and the damping factor � �Eq. �22��. This model, like the
linear viscoelastic Maxwell model, gives a COR that is indepen-
dent of impact speed. The value of the viscoplastic COR e� is
bounded between zero and the plastic loss factor �0�e����.
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Dynamics of Mechanical Systems
and the Generalized Free-Body
Diagram—Part I: General
Formulation
In this paper, we generalize the idea of the free-body diagram for analytical mechanics
for representations of mechanical systems in configuration space. The configuration
space is characterized locally by an Euclidean tangent space. A key element in this work
relies on the relaxation of constraint conditions. A new set of steps is proposed to treat
constrained systems. According to this, the analysis should be broken down to two levels:
(1) the specification of a transformation via the relaxation of the constraints; this defines
a subspace, the space of constrained motion; and (2) specification of conditions on the
motion in the space of constrained motion. The formulation and analysis associated with
the first step can be seen as the generalization of the idea of the free-body diagram. This
formulation is worked out in detail in this paper. The complement of the space of con-
strained motion is the space of admissible motion. The parametrization of this second
subspace is generally the task of the analyst. If the two subspaces are orthogonal then
useful decoupling can be achieved in the dynamics formulation. Conditions are devel-
oped for this orthogonality. Based on this, the dynamic equations are developed for
constrained and admissible motions. These are the dynamic equilibrium equations asso-
ciated with the generalized free-body diagram. They are valid for a broad range of
constrained systems, which can include, for example, bilaterally constrained systems,
redundantly constrained systems, unilaterally constrained systems, and nonideal con-
straint realization. �DOI: 10.1115/1.2965372�

Keywords: analytical mechanics, principle of relaxation of constraints, constrained and
admissible motions, generalized force, geometric representation, global and local
parametrizations

1 Introduction
The free-body diagram is a fundamental idea for the analysis of

bodies and systems in static or dynamic equilibrium. The general
recipe can be given as follows: free the body/system from its
surroundings, represent all the external and inertial forces/
moments acting on this new “freed” body/system, and write the
equations representing the static or dynamic equilibrium. For a
rigid body model, these equations are the Newton–Euler equations
describing force and moment balances.

In this paper we describe a framework generalizing this idea to
mechanical systems, which can be represented in a finite dimen-
sional configuration space. Our approach is essentially based on
the full development of the principle of relaxation of constraints.
This principle is probably best described by Papastavridis �1� as a
general principle of mechanics. However, it can be traced back to
other earlier works, e.g., Hamel �2,3� also gave a detailed discus-
sion on this topic. To a limited extent, it is implicitly present in
several methods of analytical mechanics. For example, the method
of Lagrangian multipliers can be seen as an application of the
principle of relaxation of constraints. Another later appearance of
the principle is in the work of Kane and Levinson �4� where they
used ideas of constraint relaxation, which were also described by
Hamel �2�, together with Kane’s efficient algorithmic approach to
“bring noncontributing forces into evidence.” This was also used
by Djerassi and Bamberger �5�, Lesser �6�, and Blajer �7� to fur-
ther develop the approach. These are specific applications of the

principle of relaxation of constraints to determine generalized
constraint forces without the explicit introduction of Lagrange
multipliers.

Geometric considerations are quite fundamental in analytical
mechanics to understand the global and local structures of the
configuration space of a mechanical system. One very important
contribution for such description was made by Synge �8� and
Synge and Schild �9�. Brauchli �10� further extended this formu-
lation introducing the idea of mass-orthogonal projection. Blajer
�11,12� provided geometric interpretations for some of the tech-
niques used in multibody dynamics. Papastavridis �13� gave re-
cently a detailed description of the application of tensor calculus
in analytical mechanics.

Decomposition of kinematic and kinetic quantities along admis-
sible and constrained directions of motion is central in this paper.
Ideas of such decompositions to some extent have already ap-
peared. Both Blajer �11� and Papastavridis �1� used a simple pla-
nar diagram to illustrate this geometric idea. Papastavridis �1,13�
called the dynamic equations associated with the constrained di-
rections kinetostatic equations, which can be used for bilateral
constraints. Lesser �6� also developed such kinetostatic equations
for constrained directions for ideal bilateral constraints. Blajer
�14� expressed kinetic and kinetostatic equations using a mini-
mum set of generalized velocities and the associated projectors.
He decomposed the configuration space locally to orthogonal and
tangent subspaces, which is similar to our concepts of constrained
and admissible motions. Brauchli �10� also considered ideal bilat-
eral constraints, and decomposed the generalized velocity vector
and called this decomposition the spaces of admissible and inad-
missible velocities. He derived dynamic equations using the de-
composition performed at the velocity and momentum levels only.
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For multi-rigid-body systems and perfect bilateral holonomic con-
straints, Glocker �15� decomposed the virtual displacements into
two arrays that are compatible and incompatible with the con-
straints. These are then used to state the dynamic equations in
minimum coordinates with respect to the bilateral constraints.
Kövecses et al. �16,17� also developed a similar decomposition of
the virtual displacements, and via that the decomposition of the
d’Alembert–Lagrange principle, for general bilaterally con-
strained mechanical systems, which decomposition is also appli-
cable for redundant constraints. This was used to establish simu-
lation algorithms for constrained systems.

We will further expand these cited works and results in this
present paper to fully interpret the dynamics associated with con-
strained and admissible motions, and develop the concept of the
generalized free-body diagram. Besides the description of the idea
of the generalized free-body diagram, the target of this paper is to
derive a unified formulation based on this concept to address a
broad range of constrained motion problems in one single frame-
work. These constrained motion problems can include bilateral
and unilateral conditions, nonideal phenomena stemming from the
realization of constraints, and redundantly constrained systems.
Such applications will be addressed in detail in Part II of this work
�18�.

2 Generalized Free-Body Diagram
Let us consider that the n�1 dimensional array of generalized

coordinates q= �q1 q2 . . . qn�T defines the configuration and the
time derivatives of these generalized coordinates q̇
= �q̇1 q̇2 . . . q̇n�T give a possible set of generalized velocities of
the system. We will here use a more general description for the
velocities employing components v= �v1 v2 . . . vn�T, which can
be interpreted as general linear combinations of the time deriva-
tives of the generalized coordinates as v=Nq̇ and q̇=N−1v, where
N is an n�n transformation matrix that can depend on the gen-
eralized coordinates and time. The elements of v are not necessar-
ily time derivatives �i.e., can be nonholonomic coordinates�. For a
given configuration, the configuration space can be represented
locally by an Euclidean tangent space.

One of the main differences between the so-called Newton–
Euler approach and the Lagrangian approach to Dynamics lies in
the way how forces acting on an element of a mechanical system
are decomposed. In the Newton–Euler approach forces are nor-
mally decomposed to external and internal forces; and in the La-
grangian approach they are decomposed to constraint and im-
pressed forces. In general such a classification is associated with
the presence of bilateral or unilateral constraints. These, for a
particular configuration q, can be given at the velocity level as

Av = b�q,t� or Av � b�q,t� �1�

where A=A�q , t� is usually an r�n constraint Jacobian matrix
that is generally a function of configuration and time, and b is a
given function of q and t. The simplest, and perhaps most fre-
quent, case is b=0.

These constraint equations and inequalities can, however, also
be seen from another perspective:

�1� Equation

Av = uc �2�
gives a partial linear transformation of kinematic quantities
in the tangent space, and defines an r-dimensional sub-
space: the space of constrained motion �SCM�. In this, uc is
an r�1 array giving velocity components in the SCM with
respect to a local basis of that subspace.

�2� Constraint conditions, equalities/inequalities are specified
for uc, i.e., for motion in the SCM �e.g., given by b�. Other
conditions can also be given for some of the associated
generalized forces in that subspace.

No matter what the conditions imposed in Step �2� are, Step �1�,
the definition of the transformation to the SCM, is always neces-
sary. A great deal of insight can be gained by relaxing the condi-
tions of Step �2� first and by studying the decompositions of the
dynamics of the system under the transformation of Step �1�. This
concept can be seen as the generalization of the idea of the free-
body diagram. The constraint conditions can later be reinstated at
the appropriate stage.

Figure 1 illustrates the force balances for a generalized free-
body diagram. For a static or dynamic equilibrium the generalized
force balance can be written in a coordinate-free form as

� F� = 0� �3�

where �F� represents the sum of the generalized force vectors, i.e.,
their resultant, which for the dynamics case includes the general-
ized inertial force vector as well. The generalized force vectors are
interpreted in the tangent space and can be decomposed, and rep-
resented with components, with respect to any valid parametriza-
tion and basis of that space. This is essentially the generalized
form of the ordinary way employed for force and moment bal-
ances related to free-body diagrams of a simple particle or a rigid
body. We will further elaborate on the decomposition of Eq. �3� in
later sections.

The subspace that complements the space of constrained mo-
tion to the tangent space will be called the space of admissible
motion �SAM�. In general, we can consider that local �or minimal�
generalized velocity components given in the �n−r��1 array ua

parametrize the motion in that subspace. Unlike uc, the definition
of ua is usually not given, and it is up to the analyst to select the
minimum set of generalized velocities characterizing admissible
motion. Transformation of Eq. �2� applies to the general, possibly
nonholonomic case. A subset of this is the case of holonomic
systems �Appendix�.

Besides v, components given in u= �uc
Tua

T�T can also be seen to
give an alternative complete parametrization for the dynamics of
the system. We will call representations associated with v a global
parametrization and u a local parametrization �Fig. 2�. Let us
consider that generalized force components associated with pa-
rametrizations v and u are represented by n�1 dimensional ar-
rays f and s, respectively. Then, the dynamic equilibrium condi-
tions of Eq. �3� can be further expanded as

� F� = � �g���Tf = � �h���Ts = 0� �4�

where �g���= �g�1 g�2 . . . g�n�T and �h���= �h�1 h�2 . . . h�n�T are n�1 di-
mensional arrays that contain linearly independent contravariant
base vectors of the tangent space for parametrizations v and u,
respectively. The notation used is different for these two arrays to
indicate that each element is a geometric �coordinate-free� vector,
not a scalar.

3 Parametrizations
The coordinate transformation for kinematic quantities for the

Fig. 1 Generalized force balance
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entire tangent space can be given with1

Rv = u �5�
where

R = �A

B
� and u = �uc

ua
� �6�

R is the n�n transformation matrix, u is an n�1 array, and uc
and ua are r�1 and �n−r��1 arrays, respectively. Matrix A is
defined by the specification of the transformation to the SCM, and
B is an �n−r��n matrix that depends on the selection of the local
parametrization for the SAM. The dual of transformation �5� can
be interpreted for kinetic quantities, and given for generalized
forces as

RTs = f �7�
where

s = �sc

sa
� and f = fc + fa �8�

As shown in Eq. �8�, these generalized forces can also be decom-
posed to parts associated with the two subspaces: fc and fa, and sc
and sa. These decompositions will be studied in detail. Equation
�7� can simply be derived considering that based on the power of
forces, vTf=uTs=vTRTs.

Let us consider that M and W represent the mass matrices
associated with parametrizations v and u, respectively. Then the
kinetic energy of the “freed” system can be written as

T = 1
2vTMv = 1

2uTWu �9�

These mass matrices give two valid representations of the covari-
ant components of the metric tensor of the tangent space, and their
inverses represent the contravariant components of the same ten-
sor. The components of the generalized acceleration vector, �8�,
associated with parametrizations v and u, can be written in arrays
av and au as

av = v̇ + M−1c �10�

au = u̇ + W−1z �11�

where arrays c and z contain Coriolis and centrifugal terms, and

− Mav = − �Mv̇ + c� = fI and − Wau = − �Wu̇ + z� = sI

�12�

give the generalized inertial forces in terms of the global and local
parametrizations, respectively. These can also be established from
the Gibbs–Appell function of the system, S, as fI=−�S /�v̇ and
sI=−�S /�u̇.2

Based on the transformation of kinematic components, which
are contravariant components of generalized vectors, the general-
ized accelerations also transform, using Eq. �5�, as

Rav = au �13�

and for the generalized inertial forces �kinetic quantities�, accord-
ing to Eq. �7�, as

RTsI = fI �14�

and also, based on Eqs. �5� and �10�–�13�, we can obtain

z = WRM−1c − WṘv = WRM−1c − WṘR−1u �15�
For the transformation between kinematic and kinetic compo-

nents we also have

Mv = p and Mav = f �16�

Wu = � and Wau = s �17�

where f and s can simply represent in this particular case kinetic
components at the force-acceleration level; furthermore, p and �
are generalized momenta associated with parametrizations v and
u, respectively. Transformation relationships similar to Eqs. �7�
and �8� can also be interpreted for these momentum components.

Using the above expressions, we can establish for the transfor-
mation of the mass matrices that

M = RTWR and W−1 = RM−1RT �18�

Generalized mass matrix M can be decomposed as

M = GTG �19�

where G represents an n�n nonsingular matrix. Such a decom-
position can be achieved in several different ways via the
Cholesky or the square-root factorizations, for example.3 Given
that M is a representation of the metric tensor in covariant com-
ponents, the columns of G can also be seen as giving the compo-
nents of the covariant base vectors, associated with parametriza-
tion v, with respect to a unitless, orthonormal n-dimensional
Cartesian basis. The components of the contravariant base vectors,
elements of �g��� in Eq. �4�, with respect to this Cartesian basis are
in the columns of G−T. This decomposition of M can be used to
introduce physical components �19,20� at the velocity-momentum
level as

� = Gv = G−Tp �20�

which are homogeneous in physical units �as can be seen based on
the expression of the kinetic energy �9��. They can also be con-
sidered as a special set of nonholonomic quasivelocities. The
physical components are interpreted relative to the unitless ortho-
normal Cartesian basis of the tangent space, and as such they are
the same for parametrization u as well. This can also be seen from
the two expressions of the kinetic energy in Eq. �9�. The unit of
the physical components at the velocity-momentum level is
�kg m /s. At the acceleration-force level the physical components
can be introduced as

1The transformation here is illustrated for velocity components. However, it can
also be defined for other kinematic quantities �e.g., acceleration components� in the
same form as long as the elements of the arrays can be interpreted as components of
a generalized geometric vector in the tangent space.

2Inertial forces can of course also be established in many other ways �e.g., using
the kinetic energy function�. However, the most compact and general form may be
given with the Gibbs–Appell function.

3For the Cholesky factorization, in particular, it can be shown that the algorithm
contains operations that are consistent with the possibly different physical units of
the elements of M.

space of constrained motion
(SCM)

space of admissible motion
(SAM)

local
parameterization

global parameterization

“freed” system

Fig. 2 Subspaces, global and local parametrizations
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� = Gav = G−Tf �21�

with units of �kg m /s2 where f represents kinetic components.
Performing some of the derivations using physical components

will be advantageous since this makes the use of matrix compu-
tation algorithms possible and consistent with physical units. Us-
ing physical components, transformation equations �5� and �7� can
be written as

RG−1� = u �22�
and

G−TRTs = � �23�
Breaking these relationships down to the subspaces, the transfor-
mations related to the SCM and SAM can be given in terms of
physical components as

AG−1� = uc G−TATsc = �c �24�
and

BG−1� = ua G−TBTsa = �a �25�

Based on Eqs. �5�, �6�, and �18�, W−1 and W can be expanded
as

W−1 = �AM−1AT AM−1BT

BM−1AT BM−1BT � and M = ATWA + BTWB

�26�
Using the block matrix inversion formula �21�

W = �Wcc Wca

Wac Waa
� �27�

where

Wcc = �AM−1AT�−1

+ �AM−1AT�−1AM−1BTWaaBM−1AT�AM−1AT�−1

�28�

Wca = Wac
T = − �AM−1AT�−1AM−1BTWaa �29�

Waa = �BM−1BT − BM−1AT�AM−1AT�−1AM−1BT�−1 �30�

If AM−1BT=0 �and BM−1AT=0� then the two subspaces are or-
thogonal to each other, and the expressions of W−1 and W are
greatly simplified since the coupling terms Wca and Wac vanish.
This case will play an important role in our later investigations.
However, for a little while, let us still consider the general case.
W and W−1 also represent the covariant and contravariant com-
ponents of the metric tensor in local parametrization. The decom-
position of W=HTH �similar to M� can then give the physical
components of the covariant and contravariant base vectors asso-
ciated with the local parametrization �e.g., these contravariant

base vectors are the elements of �h��� in Eq. �4��.

3.1 Singular Transformation to the Space of Constrained
Motion. One aspect we also have to address is the possibility to
define the transformations in a way that components in the SCM
are interpreted by giving a redundant set of transformation equa-
tions �e.g., the case of redundant constraints�. This is often ne-
glected in deriving formulations in analytical dynamics, but has
great practical importance in several problems. In this case A is an
m�n matrix �m�r� and does not have a full row rank; its rank
equals r. This can also be interpreted as if ATsc= fc �or RTs= f�
were given at the first place as opposed to Av=uc �or Rv=u�.4
Therefore, those transformation relationships that do not require

the formation of R−1 will hold.
Let us now consider for this general case of transformation how

components belonging to various subspaces can be determined.
First, we will look at the transformations relating to the physical
components, since they are homogeneous in physical units. For
the case of redundant rows in AG−1 there are several procedures
available to select an independent set of r rows, hence, base vec-
tors for the SCM. Examples of such techniques can be the ones
that are based on forming the physically meaningful, but singular,
inverse mass matrix AG−1G−TAT=AM−1AT, and analyzing its ei-
genvalue problem �e.g., via the singular value decomposition
�SVD� of AG−1�; or another technique can be based on the use of
Gram–Schmidt orthogonalization. It can also be possible by sim-
ply detecting and removing the redundant rows by elementary
techniques, hence determining new, now nonredundant AG−1 and
A.

Once we determined such an independent set from the rows of
AG−1 then it can be used to construct the rows of an r�n matrix
� and rewrite relations in terms of components interpreted relative
to independent base vectors. Then, the expression for W−1 in Eq.
�26� can be written as

W−1 = � ��T �G−TBT

BG−1�T BM−1BT � �31�

We have to note, however, that in such a case the independent
base vectors may no longer be associated with the originally re-
dundantly given uc-based local parametrization of the SCM. How-
ever, this does not present a problem, particularly, if global pa-
rametrization is employed to represent the dynamics formulation.
For local parametrization we would need to identify a new non-
redundant A from �, which may be done as A=�G. In the case of
a nonredundant set of transformation equations �m=r�, or when A
was redefined by identifying and removing the redundant rows,
�=AG−1 is, of course, a valid selection.

With these more general considerations the condition for or-
thogonality of the two subspaces can be given as �G−TBT=0 or
BG−1�T=0. If the two subspaces are orthogonal to each other
then Eq. �31� is simplified as

W−1 = ���T 0

0 BM−1BT � �32�

and ��T and ���T�−1 can play the role of the inner product ma-
trices for the SCM in place of AM−1AT and �AM−1AT�−1, respec-
tively.

4 Orthogonal Decompositions

4.1 Physical Components and Global Parametrization. Let
us consider here the general case and, based on Sec. 3, replace
AG−1 with � in the appropriate expressions

AG−1 → � �33�
We will derive formulas of general validity for the decomposition
of physical, kinematic, and kinetic components. To present these
in a compact form, a condensed notation will be used in this
section. The three representations of a generalized geometric vec-
tor, r�, will be denoted by r̂, r, and r, respectively, for this section
only. Array r̂= r̂c+ r̂a will represent the physical components �� or
��; ru= �ruc

T rua

T �T and rv=rvc
+rva

will be used for the kinematic

components �v ,u or av ,au�; and ru= �ruc

T rua

T �T and rv=rvc
+rva

will
represent the kinetic components �p ,� or f ,s�.

If the two subspaces are orthogonal to each other then for the
physical components the following transformation relationships
hold based on Eqs. �22�–�25� and �32�:

�r̂ = ruc
�34�

and
4In this case, sc and uc are m�1 arrays, sa and ua are �n−r��1 arrays, s is an

�n−r+m��1 array, and R is an �n−r+m��n matrix.
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�Truc
= r̂c �35�

where r̂c is an n�1 array representing the physical components of
the part of the vector which belongs to the SCM.

Based on Eq. �32�, a general representation for the inverse mass
matrix and the mass matrix in the SCM can be formed as ��T and
���T�−1, respectively. Then, according to Eqs. �17� and �32�, the
kinematic and kinetic components in this subspace can be trans-
formed into each other as

��Truc
= ruc

and ���T�−1ruc
= ruc

�36�

Based on these and using Eqs. �34� and �35� we can develop that

�T���T�−1ruc
= r̂c �37�

and then

�T���T�−1�r̂ = r̂c �38�

and

r̂ − r̂c = r̂a = �In�n − �T���T�−1��r̂ �39�

where r̂a is an n�1 array representing the physical components
of the part of the vector which belongs to the SAM, and In�n is an
n�n identity matrix. Equations �38� and �39� are two central
formulas to determine the decomposition of the physical compo-
nents. It is important to note again that these physical components
are interpreted relative to the global n-dimensional unitless Carte-
sian basis.

Matrices

P̂c = �T���T�−1� and P̂a = �In�n − P̂c� �40�

can also be called projector operators or projector matrices. They
are dimensionless. It can be seen from Eqs. �38� and �39� that they
are symmetric and idempotent. It can also be readily shown from

the above equations that P̂cP̂a= P̂aP̂c=0n�n. Therefore, as was al-
ready mentioned, the two subspaces can be considered as orthogo-
nal complements of each other. If the rows of � contain compo-
nents of orthonormal base vectors, i.e., ��T=Ir�r, then the
expression of the projector reduces to �T�.

Such orthonormal vectors can result from the application of
various techniques such as the singular value decomposition of
AG−1 that can be written as AG−1=YZVT �22�. This is also
closely related to the right pseudo-inverse of AG−1: �AG−1�†

=VZ−1YT. In this case, V is an n�r matrix and its columns
contain the physical components of r orthonormal vectors. There-
fore, �=VT can be a possible selection for the physical compo-
nents of orthonormal base vectors. Using this interpretation and
the pseudo-inverse, the projector matrix can also be written as

P̂c = �AG−1�†AG−1 �41�

The use of a pseudo-inverse is of course just one possibility, and
it is not a universal way, to express the projectors. We also have to
note that the pseudo-inverse can also be established in various
different ways, not only by using singular value decomposition.

Based on these considerations regarding the decomposition of
the physical components, let us now consider how kinematic and
kinetic components can be determined in the two subspaces in
terms of a global parametrization. Using the interpretation of the
physical components in Eqs. �20� and �21�, the decomposition of
kinematic components can be given as

G−1�T���T�−1�Grv = G−1P̂cGrv = Pcrv = rvc
�42�

and

G−1�In�n − �T���T�−1��Grv = G−1P̂aGrv = Parv = rva
�43�

where

Pc = G−1P̂cG and Pa = G−1P̂aG �44�
further, kinetic components can be decomposed as

GT�T���T�−1�G−Trv = GTP̂cG
−Trv = Pc

Trv = rvc
�45�

and

GT�In�n − �T���T�−1��G−Trv = Pa
Trv = rva

�46�

Projector matrices Pc and Pa are also idempotent, and PcPa
=PaPc=0n�n. This can be readily shown based on their definition
above. However, we can also see that they are not symmetric. This
is an interesting consequence, which is important to note and sum-
marize: For the physical components the projector matrices are
symmetric. However, for kinematic and kinetic components, the
resulting projector matrices are generally not symmetric. There-
fore, in general, Pc�Pc

T and Pa�Pa
T. This property does not de-

pend on the way how the M=GTG factorization is performed. It
holds even for the case where G is symmetric, GT=G, e.g., when
square-root factorization is employed to compute a set of base
vectors.

From Eqs. �42�–�46� it can also be seen that

Pa
TMPc = 0n�n Pc

TMPa = 0n�n �47�

Pc
TMPc = Pc

TM = MPc = GTP̂cG �48�

and

Pa
TMPa = Pa

TM = MPa = GTP̂aG �49�

For the case where the �=AG−1 selection is possible and made,
e.g., in the case of nonredundant A, it can be seen that the pro-
jector matrices reduce to

P̂c = G−TAT�AM−1AT�−1AG−1 �50�

Pc = M−1AT�AM−1AT�−1A �51�

and

P̂a = In�n − G−TAT�AM−1AT�−1AG−1 �52�

Pa = In�n − M−1AT�AM−1AT�−1A �53�

also

GTP̂cG = AT�AM−1AT�−1A GTP̂aG = M − AT�AM−1AT�−1A

�54�
Let us again state separately an important property of the above

decompositions of the various components. Here the decomposi-
tions were performed based on the knowledge of the transforma-
tion to the SCM only �matrix A�. However, the derivations also
made sure that the other subspace, the SAM, is an orthogonal
complement of the SCM.

The above orthogonal decomposition to the spaces of con-
strained and admissible motions was performed based on the glo-
bal parametrization of the tangent space. The only condition that
was used is that a transformation matrix A is known, which can
also represent a singular transformation in our formulation. We
were able to define the SAM and establish expressions for vector
components there without explicitly specifying a local parametri-
zation for that subspace. Such a local parametrization can be
given by matrix B. However, this matrix is usually not specified
explicitly, and it is the task of the analyst to determine the local
parametrization for the SAM. In the following we will reiterate
the condition that is necessary to be satisfied by the selection of B
in order for the two subspaces be orthogonal to each other. For
this, based on Eq. �31�, B needs to satisfy the condition

�G−TBT = 0 �55�

and for the case where �=AG−1
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AM−1BT = 0 �56�
The satisfaction of this condition makes it possible to separate the
dynamics of constrained and admissible motions using local pa-
rametrizations too. For the analysis of systems with bilateral con-
strains, the definition of matrix B is also equivalent to selecting a
minimum set of independent generalized velocities. However, we
have to note that there is a significant difference between the
proper “orthogonal” specification of B and the way how the se-
lection of independent generalized velocities is usually done. In-
stead of using the order of transformation given in Eqs. �5� and
�13�, usually order

�J D��ruc

rua

� = rv ↔ R−1ru = rv �57�

is given, where R−1= �J D�, ru= �ruc

T rua

T �T, and very often only
the form Drua

=rv−Jruc
is specified where term Jruc

is given for
bilateral constraints. However, the use of matrix D is generally not
equivalent to that of B. Considering Eqs. �6� and �57� it can be
seen that D will be an orthogonal complement matrix to A, i.e.,
AD=0. This property of D was also shown by Blajer �14,12�
using a different line of reasoning, with the assumption of or-
thogonal subspaces. It has also been widely applied in literature to
find D and introduce a minimum set of independent generalized
velocities for bilaterally constrained systems. In fact, AD=0 also
holds when the SCM and the SAM are not orthogonal to each
other �can be seen based on Eqs. �5�, �6�, and �57��. This is an
important point that was missed in Refs. �14,12�.

In general, the use of D does not lead to the decoupling of the
dynamics. The way how D is defined cannot usually be used to
find B. To determine a B suitable to decouple the two subspaces,
according to Eq. �55� �or Eq. �56��, we need to find an orthogonal
complement matrix to �G−T, or to AM−1. In turn, this will often
lead to the definition of nonholonomic velocity components, ua
=Bv, for the local description of the SAM.

4.2 Local Parametrization of the Subspaces. In this subsec-
tion, we develop the transformation relationships that make it pos-
sible to determine the decompositions with respect to the local
parametrizations of the subspaces. Given rv and rv, we want to
determine ruc

, rua
, ruc

, and rua
. These expressions for ruc

and rua
have already been given by Eqs. �5�, �6�, and �13�. Here we aim
for kinetic components. To give local representations for the
SAM, it is assumed that B is already identified satisfying condi-
tion �55�. Considering Eqs. �34� and �36� we can write that

���T�−1�r̂ = ���T�−1�G−Trv = ruc
�58�

which gives the relations to determine local kinetic components in
the SCM. If a nonredundant transformation matrix A is identified5

then these equations are simplified to the form

�AM−1AT�−1AG−1r̂ = �AM−1AT�−1AM−1rv = ruc
�59�

Specifying matrix B also gives the transformation relationships
between kinematic and kinetic components in the SAM via
BM−1BT and �BM−1BT�−1. Considering this and based on Eqs.
�17�, �20�, �21�, and �32�

�BM−1BT�−1BG−1r̂ = �BM−1BT�−1BM−1rv = rua
�60�

gives the transformation equations to determine local kinetic com-
ponents in the SAM.

5 Kinetic Energy Decoupling
Based on Eqs. �42� and �43�

v = vc + va, vc = Pcv, va = Pav �61�
also

u = �uc

ua
�, uc = Av, ua = Bv �62�

Using these, Eqs. �9� and �32�, and the properties of the projectors
the kinetic energy can be decoupled as

T = Tc + Ta �63�
where in global parametrization

Tc = 1
2vTPc

TMPcv = 1
2pTPcM

−1Pc
Tp �64�

Ta = 1
2vTPa

TMPav = 1
2pTPaM−1Pa

Tp �65�

and in local parametrization

Tc = 1
2uc

T�AM−1AT�−1uc = 1
2�c

T�AM−1AT��c �66�

Ta = 1
2ua

T�BM−1BT�−1ua = 1
2�a

T�BM−1BT��a �67�

This represents a complete decoupling of the kinetic energy. Tc is
the kinetic energy contained in the SCM, and Ta is the kinetic
energy associated with the SAM only.

6 Generalized Forces
A detailed partitioning of the resultant generalized force vector

in Eq. �3� can be given as

� F� = F� I + F� A + F� N + F� R �68�

where F� I represents the generalized inertial force vector, F� A is the

generalized impressed force vector, F� N is the generalized nonideal

force vector, and F� R gives the generalized constraint force vector.
Both the generalized constraint and nonideal forces are associated
with the specification and realization of constraint conditions in
the SCM. However, their nature can be different, as will be dis-
cussed in Secs. 6.1 and 6.2. These are also the parts of the gener-
alized forces that can be the subject of certain conditions as a
result of constraint specifications in the SCM. As was already
mentioned, this kind of partitioning of the forces is one of the
fundamental characteristics of Lagrangian dynamics as opposed to
the Newton–Euler description. A similar decomposition of
constraint-related generalized forces was also described by
O’Reilly and Srinivasa �23�.

Based on Eq. �4�, the partitioning of the generalized forces �68�
in global parametrization can be given as

� F� → � f = fI + fA + fN + fR �69�

and with respect to the local parametrization it can be written as

� F� → � s = sI + sA + sN + sR �70�

Any of the above elements of the generalized forces can be de-
composed into two parts: one in the SCM and the other in the
SAM.

6.1 Generalized Constraint Forces. The definition of con-
straint forces in analytical dynamics is usually done for ideal bi-
lateral constraints. Here, we will use a more general interpreta-
tion: Generalized constraint forces are embedded in the SCM and
developed as a result of specifying certain conditions or restraints
on the motion in that subspace. Constraint forces cannot directly
influence the SAM. However, they can have indirect effects, for
example, if the constraints are realized via nonideal interfaces that
lead to the development of nonideal forces that can also depend
on the constraint forces. Also, the generalized constraint forces
can usually be different for ideal or nonideal realizations of the

5For local parametrizations, in the following, we will assume that such a selection
of A is already done. For singular transformations this can be achieved as A=�G.
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same constraint specifications �examples are shown in Ref. �18��.
In local parametrization the generalized constraint forces can be

given as

sR = �sRc

sRa

� = ��

0
� �71�

and

fR = fRc
�72�

where

AT� = fRc
= Pc

TfR �73�

To simplify the notation, � is used in place of sRc
to represent the

local components of the generalized constraint forces in the SCM.
Due to the physical nature of the constraint forces, sRa

=0 and
Pa

TfR= fRa
=0. In the analysis of systems subject to bilateral con-

straints, the elements of � can correspond to the Lagrangian mul-
tipliers.

6.2 Generalized Nonideal Forces. In the case of nonideal
realization of constraints, a special type of forces can arise. We
will term these generalized nonideal forces. They enter only due
to the realization of constraints. This is an important difference
between such nonideal forces and the constraint forces discussed
in Sec. 6.1. Generalized constraint forces are developed purely to
satisfy specifications imposed on the motion in the SCM. On the
other hand, generalized nonideal forces can arise due to the way
how the constraint specifications �given for the SCM� are realized
for the physical system. We can consider, for example, an ordinary
particle moving on a surface. The constraint specification here is
that no motion exists normal to the surface. The force component
necessary to satisfy this specification is the normal force acting on
the particle. This is the constraint force for that case. It is there, no
matter how the constraint is physically realized. On the other
hand, due to the nature of the physical realization of the constraint
�e.g., the material properties of the surface�, a tangential force
component can also arise. This represents the nonideal force. If
the surface is rough, then its value is different from zero; if the
surface is smooth, then this tangential force vanishes.

Generalized nonideal forces can also depend on the generalized
constraint forces �e.g., nonideal contacts with kinetic friction�.
They can have components in both the spaces of constrained and
admissible motions �examples are detailed in Ref. �18��. In the
dynamics literature, such nonideal forces are also often classified
merely as components of the generalized constraint forces. How-
ever, this is not really the case as was pointed out in Refs.
�1,24,15�, and also explained here, for example. Such forces can
have actually more the nature of impressed forces �e.g., kinetic
friction�. Thus, if we want to be precise then these could also be
classified as impressed forces.

These nonideal forces are normally specified by force laws as
functions of the constraint forces, the state of motion, and possibly
time as

fN = fN��,v,q,t� or fN = fN�fR,v,q,t� �74�
The components in the subspaces can be determined in terms of

global parametrization as

fNc
= Pc

TfN fNa
= Pa

TfN �75�

or in local parametrization as

sNc
= � = �AM−1AT�−1AM−1fN �76�

and

sNa
= � = �BM−1BT�−1BM−1fN �77�

where � and � are introduced to simplify the notation for the
local components in the subspaces.

7 Dynamics Formulation: Constrained and Admissible
Motions

7.1 Global Parametrization. Based on Eqs. �4� and �69�, the
dynamic equilibrium of the generalized free-body diagram of the
system can be represented as

� f = fI + fA + fN + fR = 0 �78�

Then, via the decomposition of this equation to the SCM and
SAM, based on Eqs. �45� and �46�, the dynamic equilibrium can
be obtained for constrained motion as

Pc
T�fI + fA + fN + fR� = 0 �79�

and for admissible motion as

Pa
T�fI + fA + fN + fR� = 0 �80�

These equations represent the dynamic equilibrium of the system
for one particular point in time regardless of what the specifica-
tions are on the motion.

Considering the expression of the generalized inertial forces
given in Sec. 3 and Eq. �12�, the partitioning of the generalized
forces in Sec. 6, and the properties of the projectors in Sec. 4, the
above equations can be expanded. The dynamic equations for con-
strained motion in global parametrization can be written as

− GTP̂cGv̇ − Pc
Tc + Pc

TfA + Pc
TfN + fR = 0 �81�

and the dynamic equations for admissible motion in global pa-
rametrization can be given as

− Mv̇ + GTP̂cGv̇ − Pa
Tc + Pa

TfA + Pa
TfN = 0 �82�

These can be seen as a general form of dynamic equations for
constrained and admissible motions.

The term GTP̂cGv̇ is an element in both equations. In the gen-
eral case, this term can be expanded as

GTP̂cGv̇ = GT�T���T�−1�Gv̇ �83�

We also note that Av̇+ Ȧv= u̇c. If �=AG−1 is used then the ex-
pression in Eq. �83� reduces to

GTP̂cGv̇ = AT�AM−1AT�−1Av̇ = AT�AM−1AT�−1�u̇c − Ȧv�
�84�

If the projector operator for the physical components P̂c is ex-

pressed using the pseudo-inverse as P̂c= �AG−1�†AG−1 then

GTP̂cGv̇ = GT�AG−1�†Av̇ = GT�AG−1�†�u̇c − Ȧv� �85�

Depending on the way how � is selected other simplified expres-

sions can also be possible for GTP̂cG. If � is determined based on
purely numerical procedures then simplified expressions may not
be possible. These above expressions hold for both singular and
nonsingular cases of the specification of the transformation to the
SCM.

7.2 Local Parametrization. Using Eqs. �4� and �70�, the dy-
namic equilibrium of the generalized free-body diagram of the
system can be written in local parametrization as

sI + sA + sN + sR = 0 �86�

where considering orthogonal subspaces

�87�

and using Eq. �15�

Journal of Applied Mechanics NOVEMBER 2008, Vol. 75 / 061012-7

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



zc = �AM−1AT�−1AM−1c − �AM−1AT�−1Ȧv

= �AM−1AT�−1�AM−1c − ȦR−1u� �88�

za = �BM−1BT�−1BM−1c − �BM−1BT�−1Ḃv

= �BM−1BT�−1�BM−1c − ḂR−1u� �89�
Then, based on Eqs. �59� and �60� and the partitioning of the
generalized forces in Sec. 6, we obtain the dynamic equations of
constrained motion in terms of local parametrization as

− �AM−1AT�−1u̇c − zc + �AM−1AT�−1AM−1fA + � + � = 0

�90�
and the dynamic equations of admissible motion in terms of local
parametrization as

− �BM−1BT�−1u̇a − za + �BM−1BT�−1BM−1fA + � = 0 �91�
Equations �90� and �91� can also be called the minimum form of
the dynamic equations, where the SAM is defined to be orthogo-
nal to the SCM based on the mass metric. The generalized forces
are decomposed and expressed in terms of the local, minimum
parametrization of the two subspaces.

We have derived dynamics equations for both constrained and
admissible motions in two parametrizations. These equations hold
for the general case of a mechanical system. These can also be
used in a mixed way in any of the following four possible com-
binations:

• Global parametrization is used for both constrained and ad-
missible motions.

• Local parametrization is used for both constrained and ad-
missible motions.

• Local parametrization is used for constrained motion and the
global one for admissible motion.

• Global parametrization is used for constrained motion and
local for admissible motion.

8 Examples
Let us consider here two examples to illustrate some of the

potential of the material. The first one is a relatively simple but
nontrivial example that makes it possible to establish the formu-
lation in closed form. The second one involves a more complex
engineering system, where some experimental results are used for
demonstration.

8.1 Generalized Particle. This example is illustrated in Fig.
3. This is a modified version of the example of the ordinary par-
ticle �12�. The system is modeled using a generalized particle. It
exhibits different inertia for motions in various directions: m1 in
the x0 and m2 in the y0 directions, respectively. This generalized
particle represents a more complex physically meaningful system.
For example, this can be the task space model for a planar robotic

arm having two prismatic joints where the joint axes are orthogo-
nal to each other in the plane of motion �25�. The x0y0 coordinate
system represents an inertial frame, and the block is stationary in
this frame.

The generalized coordinates of this system can be given as q
= �x y�T, where these coordinates measure the location of the gen-
eralized particle relative to the origin of the x0y0 frame. The global
parametrization of the tangent space can be represented with gen-
eralized velocities v= q̇= �ẋ ẏ�T.

The possible constraint we would like to characterize is related
to the motion of the generalized particle on the surface of the
block. To develop the dynamics associated with the generalized
free-body diagram, the necessary transformation equations to de-
fine constrained and admissible motions can also be introduced at
the coordinate level for this problem. This means that it is essen-
tially possible to decompose the whole non-Euclidean configura-
tion space to constrained and admissible configuration spaces.
This configuration-level transformation can be given as

�x2 + y2 = � = dc �92�

where dc=� gives a local parametrization of the constrained con-
figuration space; and the local parametrization for the SCM can be

given as uc= ḋc= �̇, which is a scalar quantity in this case. The
SCM is a one-dimensional subspace.

Then the velocity and acceleration level transformations repre-
senting the relaxed constraints can be written as

xẋ + yẏ

�x2 + y2
= �̇ = uc �93�

xẍ + ẋ2 + yÿ + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�
3
2

= �̈ = u̇c �94�

and factoring out the transformation matrix we obtain

� x
�x2 + y2

y
�x2 + y2 �� ẋ

ẏ
� = �̇ →

�95�

→ Av = uc A = � x
�x2 + y2

y
�x2 + y2 �

and

�96�

The elements of the generalized inertial and impressed forces in
the global parametrization can be expressed as

fI = − Mv̇ − c = − �m1 0

0 m2
�� ẍ

ÿ
� − �0

0
� �97�

fA = �Fx

Fy
� �98�

where Fx and Fy are given applied forces acting on the general-
ized particle. For the components of the generalized constraint
forces we can have

fR = � fR1

fR2

� = AT� �99�

and the nonideal forces �if they are present� need to be specified in
the form

fN = fN��,v,q,t� = � fN1

fN2

� �100�

0

0

�

�

Fig. 3 A generalized particle on a circular block
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where � in this example reduces to a single scalar �.
Let us consider now the dynamics decomposition described in

this work to establish the dynamic equations associated with ad-
missible and constrained motions. The decomposition of the mass
matrix M can be established as

M = GTG, G = ��m1 0

0 �m2
� �101�

Since, in this example, we deal with one independent constraint
the projector operators can be evaluated according to Eqs.
�50�–�53� as

Pc = M−1AT�AM−1AT�−1A = 	
m2x2

m2x2 + m1y2

m2xy

m2x2 + m1y2

m1xy

m2x2 + m1y2

m1y2

m2x2 + m1y2


�102�

Pa = �1 0

0 1
� − 	

m2x2

m2x2 + m1y2

m2xy

m2x2 + m1y2

m1xy

m2x2 + m1y2

m1y2

m2x2 + m1y2



= 	
m1y2

m2x2 + m1y2 −
m2xy

m2x2 + m1y2

−
m1xy

m2x2 + m1y2

m2x2

m2x2 + m1y2

 �103�

which are asymmetric �as we already discussed in Sec. 4.1�. This
also shows the reason why we called this example a simple but
nontrivial one. Had we considered an ordinary particle model with
m1=m2, then the projectors would have been symmetric. How-
ever, as we can see, for a more complex system these matrices are
generally asymmetric.

Based on the above and Eq. �81� the dynamic equations of
constrained motion can be obtained in terms of global parametri-
zation as

− 	
m1m2x�x2 + y2

m2x2 + m1y2

m1m2y�x2 + y2

m2x2 + m1y2

��̈ − � ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�
3
2
��

+ 	
Fxm2x2 + Fym1xy

m2x2 + m1y2

Fxm2xy + Fym1y2

m2x2 + m1y2

 + 	

fN1
m2x2 + fN2

m1xy

m2x2 + m1y2

fN1
m2xy + fN2

m1y2

m2x2 + m1y2



+ � fR1

fR2

� = �0

0
� �104�

According to Eq. �82� the dynamic equations of admissible mo-
tion for this system can be written in terms of global parametri-
zation as

− �m1 0

0 m2
�� ẍ

ÿ
� + 	

m1m2x�x2 + y2

m2x2 + m1y2

m1m2y�x2 + y2

m2x2 + m1y2



���̈ − � ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�
3
2
�� + 	

Fxm1y2 − Fym1xy

m2x2 + m1y2

− Fxm2xy + Fym2x2

m2x2 + m1y2



+ 	
fN1

m1y2 − fN2
m1xy

m2x2 + m1y2

− fN1
m2xy + fN2

m2x2

m2x2 + m1y2

 = �0

0
� �105�

We already have a local parametrization for the SCM based on
uc= �̇. The dimension of the SAM in this example is also one. In
order to introduce a local parametrization for the SAM, in a way
that decoupling is achieved, a 1�2 matrix B= �B1B2� has to be
selected, which satisfies Eq. �56�. Based on that equation we can
derive the following conditions for the elements of matrix B:

B1

B2
= −

m1y

m2x
�106�

Therefore, the following selection:

B = �−
m1y

m2x
1 � �107�

satisfies Eq. �56�, and the generalized velocity for the local param-
etrization of the SAM can be determined as

ua = Bv = −
m1y

m2x
ẋ + ẏ �108�

which is a nonholonomic quantity. It has a singularity at x=0. The
potential problems associated with this can be avoided by redefin-
ing ua and B in the neighborhood of x=0. For example, based on
Eq. �106� the selection B= �1 − �m2x� / �m1y�� is also possible,
which results in an alternative ua= ẋ− ẏ�m2x� / �m1y� parametriza-
tion for the SAM, which is appropriate for the vicinity of x=0. In
the following, here we will develop the details only for the case
represented by Eqs. �107� and �108�. The expressions for any
other selection for the local parametrization can be developed in a
similar way.

With the selection of B, transformation matrix R in Eq. �5�
between the two parametrizations of the tangent space is fully
specified and can be written as

R = �A

B
� = 	

x
�x2 + y2

y
�x2 + y2

−
m1y

m2x
1 
 �109�

Its inverse and time derivative can also be determined as

R−1 = 	
m2x�x2 + y2

m2x2 + m1y2
−

m2xy

m2x2 + m1y2

m1y�x2 + y2

m2x2 + m1y2

m2x2

m2x2 + m1y2

 �110�

and
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Ṙ = �Ȧ

Ḃ
� = 	

ẋ
�x2 + y2

−
x�xẋ + yẏ�
�x2 + y2�3/2

ẏ
�x2 + y2

−
y�xẋ + yẏ�
�x2 + y2�3/2

−
m1

m2
� ẏ

x
−

yẋ

x2 � 0 

�111�

Using R−1 the original parametrization v can be expressed in
terms of the new local parametrization of u= ��̇ ua�T as

v = � ẋ

ẏ
� = R−1u = 	

m2x�x2 + y2

m2x2 + m1y2 �̇ −
m2xy

m2x2 + m1y2ua

m1y�x2 + y2

m2x2 + m1y2 �̇ +
m2x2

m2x2 + m1y2ua



�112�

Based on the expressions of A and B

�AM−1AT�−1AM−1 = �m2x�x2 + y2

m2x2 + m1y2

m1y�x2 + y2

m2x2 + m1y2 � �113�

and

�BM−1BT�−1BM−1 = �−
m2xy

m2x2 + m1y2

m2x2

m2x2 + m1y2 �
�114�

Using these and Eqs. �90� and �91� the dynamic equation of con-
strained motion in terms the local parametrization can be written
as

− �m1m2�x2 + y2�
m2x2 + m1y2 ��̈ + �m1m2�x2 + y2�

m2x2 + m1y2 � ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�
3
2
��

+ � �m2xFx + m1yFy��x2 + y2

m2x2 + m1y2 �
+ � �m2xfN1

+ m1yfN2
��x2 + y2

m2x2 + m1y2 � + � = 0 �115�

and the dynamic equation of admissible motion in terms of the
local parametrization can be obtained as

−
m2

2x2

m2x2 + m1y2 u̇a −
m1m2x2

m2x2 + m1y2� ẏẋ

x
−

yẋ2

x2 � +
m2x2Fy − m2xyFx

m2x2 + m1y2

+
m2x2fN2

− m2xyfN1

m2x2 + m1y2 = 0 �116�

which can also be further simplified by multiplying it with m2x2

+m1y2 and also by dividing it with m2. In these equations, Eqs.
�115� and �116�, the generalized forces are decomposed with re-
spect to the local base vectors of the two subspaces. However, in
the detailed expansion of the formulas, elements of v still enter.
These can be eliminated by using Eq. �112�. On the other hand,
since we generally deal with nonholonomic velocities, the original
�global� generalized coordinates remain.

8.2 Dual-Pantograph Device. The second example includes
a recently developed experimental system shown in Fig. 4. This is
a six degree-of-freedom dual-pantograph mechanism.6 It is a fully
instrumented open-architecture system that uses the WINCON real-
time control software with MATLAB/SIMULINK interface.

The global parametrization for the tangent space of this system
can be defined with the time rates of six actuated joint angles.
These joints are all instrumented. Therefore, the global parametri-
zation here is based on directly measurable quantities. The dy-
namics formulation described in this paper has been implemented

on this experimental system in real-time using the global param-
etrization. We are able to compute and interpret everything online,
which can also open up the possibility to explore the potential of
the approach for control and design applications.

The reference body of this system can also be called a wand.
The definition of the SCM and the related local parametrization
here will be given associated with the motion of one or two ref-
erence points of the wand. We will consider a relatively simple
motion of the system. The point at the center of the wand follows
a circular trajectory in the xy plane, as shown in Fig. 5, with a
constant speed. At the same time the wand rotates about one of its
principal axes of inertia that is parallel to axis z and goes through
the center point �Fig. 4�.

We will investigate the system for each point of this trajectory
for the possibility of imposing constraints on the motion of �1�
one and �2� two points of the wand along the y direction. The
approximate location of these reference points is shown in Fig. 4.
For both cases, the points are in the xy plane. For the second case
the two points are separated from each other by 25.4 mm �1 in�. In
Case �1� the SCM has one dimension, and in Case �2� it is a
two-dimensional subspace. Defining the SCM with these specifi-
cations, and based on that, establishing the dynamics formulation
of the generalized free-body diagram for the device can provide
insight for several practical situations. For example, this can give
useful information on what can be expected if the motion of the
given reference point�s� of the wand are suddenly restrained by
some bilateral or unilateral contacts along the y direction. The
kinetic energy decoupling described in Sec. 5 can provide an im-
portant tool for this. The kinetic energy contents of the two sub-
spaces can be representative to characterize what would happen if

6This experimental test-bed was built by QUANSER.

reference body - wand

reference point(s)

CAD Model

x
y

z

Physical System

Fig. 4 Dual-pantograph device

−20 −10 0 10 20
35

45

55

65

75

Starting Point

Fig. 5 Trajectory of the center point of the wand „units are in
mm…
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constraints were imposed on the SCM. The results for the kinetic
energy decomposition for the two cases are shown in Figs. 6 and
7, respectively. The starting point of Fig. 5 corresponds to t=1 s.
These results are obtained based on the online implementation and
processing of the dynamics formulation and the measured data for
the investigated trajectory.

Depending on the objectives of the investigation several pieces
of information can be gained from these results. For example,
configurations along the trajectory associated with low kinetic en-
ergy content in the SCM �Tc� means that the sudden imposition of
restraints on the motion of the representative point�s� along the y
direction may be achieved in a relatively smooth way without
inducing high constraint-related forces in the system. For the first
case when the SCM is one dimensional and it concerns only the
motion of one reference point of the wand, the results could prob-
ably be also concluded and confirmed based on the intuition of the
analyst �e.g., the best situation can be close to when the point has
low velocity along the possibly constrained direction, e.g., at con-
figurations where x=0 in Fig. 5, and t=1 s and 2 s in Fig. 6�.

However, even for this case, we have to emphasize that the de-
composition is done here using a global parametrization, which is
based on directly measurable and controllable quantities. For the
second case �Fig. 7�, when the SCM is two dimensional, the re-
sults are far from being that intuitively understandable even for
such a simple trajectory. The structure of the SCM is much more
complex for that case. It cannot be simply interpreted from the
one-dimensional �one point is constrained� case. Imposing con-
straints on the motion of two points of the wand would also mean
restricting its rotation about its principal axis of inertia parallel to
z. This can greatly change the overall system behavior.

9 Conclusions
In this paper we generalized the idea of the free-body diagram

for use in the analysis of mechanical systems represented in con-
figuration space. The results presented give a direct extension of
classical analytical mechanics based on a simple mathematical
formulation. They provide a single unified framework that can be
used, for example, for the analysis of bilaterally constrained sys-
tems with ideal interfaces, nonideal phenomena, redundant con-
straints, and some aspects of unilateral problems.

A key point is the replacement of the direct consideration of the
constraint specifications with a two-level analysis: �1� The first
level includes the definition of a transformation that interprets the
space of constrained motion �SCM�. Based on this, the interpre-
tation of the space of admissible motion �SAM� is possible. This
level also includes the full development of dynamic equations for
these two subspaces. �2� The specification of conditions on the
motion/forces in the SCM. This second step will be further ana-
lyzed in Part II of this work �18�.

The dynamics formulation associated with the two subspaces
have been derived in global and local parametrizations. They hold
for the above-mentioned general group of mechanical systems.
The constraint dynamics formulation represents a particular new
contribution as such equations have not been derived before for
the general case. The admissible dynamics equations are also in-
terpreted in a novel way. The parametrization of the SAM is de-
fined in this paper so that the two subspaces are orthogonal to
each other. This property enables us to decouple the dynamics,
which can be useful in many applications. The formulation de-
rived also fully accounts for the possibly differing physical units
of the various quantities.
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Appendix: Holonomic Systems
An important case is when equation Av=uc can be transformed

into an integrable form and can be represented by an equivalent
nonlinear transformation relationship

�c�q� = dc �A1�

at the configuration level, and ḋc=uc. At the velocity level, from
Eq. �A1�,

��c

�q
q̇ = ḋc = uc �A2�

and Av=uc can be recovered as

�A3�

In this case, in addition to partitioning the tangent space, the
nonlinear transformation of Eq. �A1� also defines a generally non-
Euclidean subspace of the entire configuration space, which can
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Fig. 6 Kinetic energy decomposition for one-dimensional
SCM based on experimental data „units: time in s and energy in
J…
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Fig. 7 Kinetic energy decomposition for two-dimensional SCM
based on experimental data „units: time in s and energy in J…
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be termed the constrained configuration space. This is the case of
holonomically constrained systems, for example. If dc=0 then the
point representing the system in the configuration space is not part
of this constrained subspace.

As for the tangent space via Av=uc, transformation �A1� also
gives the possibility to interpret the admissible configuration
space that complements the constrained configuration space to the
entire configuration space. An equivalent, configuration-level rep-
resentation to Bv=ua may also be interpreted as

�a�q� = da �A4�
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Dynamics of Mechanical Systems
and the Generalized Free-Body
Diagram—Part II: Imposition of
Constraints
In this part of the work we present some applications of the formulation developed in
Part I (Kövecses, 2008, “Dynamics of Mechanical Systems and the Generalized Free-
Body Diagram—Part I: General Formulation,” ASME J. Appl. Mech., 75(6), p. 061012)
for the generalized free-body diagram in configuration space. This involves the specifi-
cation and imposition of constraint conditions, which were identified as Step 2 of the
analysis of a mechanical system in Part I. We will particularly consider bilaterally and
unilaterally constrained systems, where constraints are realized via ideal or nonideal
interfaces. We also look at the general case where the constraint configuration is possibly
redundant. The results represent novel forms of dynamics models for mechanical systems,
and can offer the possibility to gain more insight for simulation, design, and control.
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1 Introduction
In this paper, we use the general formulation developed in Part

I of this work �1� to study bilaterally or unilaterally constrained
systems for the cases of ideal and nonideal realizations of con-
straints. This essentially includes the consideration of certain con-
ditions given in the space of constrained motion �SCM�.

Bilateral ideal constraints play a primary role in analytical me-
chanics. Fundamental works include, for example, that of Hamel
�2�, Rosenberg �3�, Pars �4�, Lure �5�, Papastavridis �6�, Kane and
Levinson �7�, and Greenwood �8�. Works of Schiehlen �9�, Eber-
hard and Schiehlen �10�, and Shabana �11� gave overviews of the
applications of analytical mechanics for multibody systems with
special attention to the computational aspects. Recent contribu-
tions can be cited from Udwadia and Kabala �12–18� who made
significant steps toward extensions of the analytical formulation
for systems with redundant constraints and nonideal constraints.
Their formulation is derived based on Gauss’ principle of least
constraint, and the Moore–Penrose generalized inverse �pseudo-
inverse� plays a pivotal role in the equations. However, the appli-
cability of their approach for systems where the “nonideal con-
straint force components” depend on the “normal constraint
forces” is questionable �e.g., the case of Coulomb friction�. This
will be discussed later in this paper. Pfeiffer and Glocker �19� also
studied the nonideal realization of bilateral constraints and redun-
dant constraint configurations. They reported and summarized im-
portant observations regarding the solvability of problems with
Coulomb friction.

For the modeling of unilaterally constrained systems and im-
pulsive motion, significant contributions have been reported by
Moreau �20�, Pfeiffer �21�, Pfeiffer and Glocker �19�, Glocker
�22�, and Brogliato �23�. In the derivation of the underlying dy-
namics models, particularly the work of Pfeiffer and Glocker �19�
can be seen as a primary reference. Glocker �22� further devel-
oped these concepts for nonsmooth systems and established a

framework of force laws for the characterization of discontinuous
interactions. We have to note that the problems of unilateral con-
straints are much more involved than that of bilateral conditions.
The complete analysis of unilaterally constrained systems is not
the topic of this present work. We address only some aspects of
unilaterally constrained motion here. However, our development
of various model formulations in this paper may also offer some
additional insight into the modeling and analysis of unilateral
problems.

For practical applications, it is not always straightforward to
decide on what type of model can be the most representative. For
example, the same physical system can be modeled in many dif-
ferent ways �e.g., using bilateral or unilateral constraints and ideal
or nonideal interfaces� depending on the type of information the
analyst needs. The formulations in this paper are derived from a
unified framework provided by the generalized free-body diagram
and can make it possible to easily switch between models and
investigate the suitability of a particular model or parametrization.
We will use the example of the generalized particle described in
Part I to illustrate the development of the possible models for the
same physical system. The terminology and nomenclature defined
in Part I will be used in this paper also.

2 Imposition of Constraints
In this case, kinematic specifications are given for the motion in

the SCM, i.e., the right-hand side of equation

Av = uc �1�
is subject to conditions given either in the form of equalities �bi-
lateral constraints� or inequalities �unilateral constraints�. For the
case of bilateral constraints no other conditions are necessary.
However, for the case of unilateral constraints, kinetic specifica-
tions may also be necessary for the generalized constraint forces
that are developed.

We have to note that the term “admissible” stems from the
terminology of bilaterally constrained systems. For a general sys-
tem the space of admissible motion �SAM� does not necessarily
mean all possible motions of the system. As we will see for bilat-
eral constraints, all possible motions are associated with the gen-
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eralized directions of the SAM. However, for unilateral con-
straints the range of possible motions is much broader, and
besides the SAM, the SCM can also contain them. The refined
geometric description of the tangent space becomes much more
involved for unilateral constraints �20,22�. However, the kine-
matic constraint conditions imposed on the motion concern the
SCM only. The formulation developed here is valid since the idea
of the generalized free-body diagram and the associated decom-
positions hold for any of such cases.

For the case of bilateral constraints the dynamic equations of
admissible motion are the so-called equations of motion.

2.1 Bilateral Constraints. In this case, uc is fully specified,
which can be represented as

uc = b and u̇c = ḃ �2�

where b is a given function. Typical examples are �1� when b
=0 and �2� when b depends on the time and/or the generalized
coordinates.

Such bilateral constraints can be holonomic, nonholonomic,
scleronomic, or rheonomic depending on the nature of b and Eq.
�1�. Since uc is fully given, the variations of generalized velocities
in the SCM must be uniformly zero, i.e.,

A�v = �uc = 0 �3�

2.1.1 Ideal Realization: Ideal Physical Interfaces. The sim-
plest case of the class of bilateral constraints is the group of ideal
constraints that is the most studied problem in analytical mechan-
ics. The definition of ideal constraints in analytical mechanics is
that the totality of the virtual power �or virtual work� of the gen-
eralized constraint forces is equal to zero.

In our framework this corresponds to the case when no nonideal
forces are developed as a result of the realization of the con-
straints, i.e.,

fN = 0, � = 0, � = 0 �4�

The components of the constraint forces � and fR can assume
negative, zero, and positive values �they are free to vary�. The
vanishing of the totality of the virtual power is made sure by the
bilateral specifications for the SCM, which implies Eq. �3�.

Then the substitution of Eqs. �2� and �4� into Eqs. �81�, �82�,
�90�, and �91� in Part I results in the dynamic equations of con-
strained and admissible motions.

In global parametrization, the dynamic equations of con-
strained motion can be written as

− GTP̂cGv̇ − Pc
Tc + Pc

TfA + fR = 0 �5�
and the dynamic equations of admissible motion are

− Mv̇ + GTP̂cGv̇ − Pa
Tc + Pa

TfA = 0 �6�
where

GTP̂cGv̇ = AT�AM−1AT�−1Av̇ = AT�AM−1AT�−1�ḃ − Ȧv� �7�
for nonredundant constraints and, for example,

GTP̂cGv̇ = GT�AG−1�†Av̇ = GT�AG−1�†�ḃ − Ȧv� �8�
can be used more generally, which also holds for redundantly
constrained systems.

In local parametrization, the dynamic equations of constrained
motion can be written as

− �AM−1AT�−1ḃ − zc + �AM−1AT�−1AM−1fA + � = 0 �9�
and the dynamic equations of admissible motion can be given as

− �BM−1BT�−1u̇a − za + �BM−1BT�−1BM−1fA = 0 �10�
For this case, the dynamic equations of constrained motion ex-

pressed in either global or local parametrization, Eqs. �5� and �9�,
simply become a set of equations that can be used for the defini-

tion and interpretation of the generalized constraint forces. These
generalized forces are necessary to be developed to satisfy the
conditions imposed on uc and on its time derivative. Generalized
constraint force components in � are often actual physical forces
developed via contacts. On the other hand, in the global param-
etrization, generalized constraint forces in fR may represent a re-
sultant effect of the physical constraint forces. Therefore, the glo-
bal parametrization works for both redundantly and
nonredundantly constrained systems. The local parametrization
can also be defined for both. However, all of the actual physical
constraint forces may not be directly determined for redundantly
constrained systems because in that case the local, minimum pa-
rametrization may not contain all information about the kinetics of
the constraints.

For ideal constraints, as we can see based on Eqs. �6� and �10�,
the admissible dynamics equations can generally be solved inde-
pendently of the constraint dynamics for either the accelerations
�forward dynamics� or for some of the generalized impressed
forces �inverse dynamics�.

Even for this simplest case of constraints, the above equations
contain several novel features. For example, Eq. �10� developed
for admissible motion in the local parametrization is new. This is
developed based on the orthogonal decomposition described in
Part I, and can be useful in several applications to gain insight into
the behavior of a system. It can also have application for high
fidelity simulation algorithms to avoid constraint violations. Based
on the definition of B in Part I, Eq. �10� can actually also be
interpreted for redundantly constrained systems without the intro-
duction of a minimum local parametrization for constrained
motion.

Furthermore, for example, if a generalized inverse is used ac-
cording to Eq. �8�, then the dynamic equations of admissible mo-
tion in terms of global parametrization �Eq. �6�� can be written as

Mv̇ + GT�AG−1�†�Ȧv − ḃ� + Pa
Tc − Pa

TfA = 0 �11�

This, on its own, is a new general form of the equations of admis-
sible motion for ideally constrained systems that can be used for
both forward and inverse dynamics investigations. It applies to
both redundantly �A does not have a full row rank� and nonredun-
dantly �A has a full row rank� constrained systems, where the
constraints can be holonomic and/or nonholonomic. As Eq. �11�
uses a generalized inverse, it may also be seen as similar to the
formulation of Udwadia and Kalaba �12,13�. However, the ap-
proach applied here and the form of the equations obtained are
different. First, Eq. �11� is presented in the general form of non-
holonomic velocity components, and the decomposition of the
mass matrix to M=GTG is not limited to the square-root factor-
ization only. However, these are relatively minor differences. The
Udwadia–Kalaba formulation can also be modified to include
these. The main difference lies in the way constraint forces are
handled. Generalized constraint forces are explicitly determined
and included in the dynamic equations of Udwadia and Kalaba
�12,13�. On the other hand, generalized constraint forces are elimi-
nated in our formulation. This is a principal difference, which
leads to two different forms to give the equations of motion. Since
constraint forces are eliminated via projections, our formulation
may also be better suited for the development of numerical inte-
gration algorithms, as was illustrated in Refs. �24,25�, for ex-
ample, with some simulation results.

2.1.2 Nonideal Realization. The realization of constraints of-
ten involves the application of nonideal contacts or other features,
where, as a result of the imposition of the constraints, forces are
induced in the SAM as well �e.g., due to friction�. In this case, the
relations of Eq. �4� do not hold and nonideal forces enter into the
formulation. These can depend on the constraint forces and can
generally be expressed by equations like Eqs. �74�–�77� of Part I.

A direct analogy can be drawn here with a particle moving on a
flat surface where the contact force normal to the surface repre-
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sents the constraint force component and the friction force in-
duced along the tangent plane of the surface is the nonideal force
that depends explicitly on the normal contact force. For this
simple example, the nonideal force acts along the tangential di-
rection, which represents the SAM. However, in general, for more
complex systems, such nonideal forces can also have components
in the SCM. A typical example for this is the closed-loop slider-
crank mechanism where the presence of friction between the
slider and the base link changes not only the tangential force
component �nonideal force� but also the normal force component
�constraint force� �Fig. 1�. Therefore, the physical tangential di-
rection of the slider is not fully contained in the SAM �that is
defined to be orthogonal to the SCM �1��. For the interpretation of
Fig. 1, we note that the acceleration of the slider is considered the
same for both cases; hence, the inertial force is also the same. The
mass and the moment of inertia of Body 3 are assumed to be
negligible; hence, that element is considered as a “two-force”
member for this example.

The substitution of Eq. �2� into Eqs. �81�, �82�, �90�, and �91� of
Part I results in the dynamic equations of constrained and admis-
sible motions for the case of nonideal realization. These can be
written as follows.

In global parametrization the dynamic equations of constrained
motion are

− GTP̂cGv̇ − Pc
Tc + Pc

TfA + Pc
TfN + fR = 0 �12�

and the equations of admissible motion can be written as

− Mv̇ + GTP̂cGv̇ − Pa
Tc + Pa

TfA + Pa
TfN = 0 �13�

where GTP̂cGv̇ can be interpreted according to Eqs. �7� and �8�,
for example.

In local parametrization the dynamics of constrained motion
can be expressed as

− �AM−1AT�−1ḃ − zc + �AM−1AT�−1AM−1fA + � + � = 0

�14�
and the dynamic equations of admissible motion are written as

− �BM−1BT�−1u̇a − za + �BM−1BT�−1BM−1fA + � = 0 �15�
These are also novel forms of dynamic equations for nonideal

constraint realization.
In this case the equations of admissible motion cannot be

solved independently of the dynamic equations of constrained mo-
tion �unlike in the case of ideal constraint realization�. The con-
straint dynamics equations are still used to determine the expres-
sions of the components of the generalized constraint forces in the
SCM. However, new terms can enter via � and fN. The constraint
forces have to be computed first in a known state of motion and
then they can be used to fully express and solve the equations of
admissible motion either for the accelerations �forward dynamics�
or for some of the generalized impressed forces �inverse dynam-
ics�. Again, just like in the case of ideal constraints, for redundant
constraint configurations not all individual constraint forces may
be determined using local parametrization. This can also cause
problems with the solvability of such problems in general, since
the nonideal forces may explicitly depend on all of the individual
“local” constraint forces. This will also be discussed later.

As we already noted, Udwadia and Kabala �14–18� also devel-
oped a formulation to consider nonideal constraints. However, it is
not clear how their formulation would work for the case of Cou-
lomb friction, where the nonideal forces induced by friction de-
pend on the “normal” constraint forces. As seen in the example in
Fig. 1, for such cases it is generally not true that the “ideal”
constraint force �determined with the assumption of ideal contact�
could be used to evaluate the nonideal force. The “normal” con-
straint force itself is influenced by the presence of the nonideal
contact. Therefore, some of the primary conclusions drawn in
Refs. �14–18� do not hold for many mechanical systems. The
examples shown in those papers for Coulomb friction are too
simplistic to shed light on this shortcoming of their formulation.
On the other hand, the formulation proposed in this present work
can deal with such nonideal realizations.

2.2 Unilaterally Constrained Motion. In this case, uc is only
partially specified via the definition of inequalities that can be
represented most typically1 as

1We have to note that these conditions are valid in particular configurations only,
e.g., when the unilateral contacts are closed. These velocity and acceleration level
conditions cannot just simply be derived from configuration level inequalities via
time differentiation.
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Fig. 1 Illustration of the effects of nonideal interfaces
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uc � 0 and u̇c � 0 �16�

In this case, besides the SAM; motion is also possible in the SCM,
hence, the associated virtual velocities will not vanish uniformly.
This prevents performing the simplifications that are possible for
the bilateral case. Also, for this unilateral case the developed con-
straint forces, elements of �, cannot take arbitrary values. They
have to obey certain physical conditions, which can usually be
represented as

� � 0 �17�

However, generally not all the combinations of the kinematic �Eq.
�16�� and kinetic �Eq. �17�� conditions are possible. We can con-
sider that based on the physics of the problem, the generalized
constraint forces developed due to the constraint conditions of Eq.
�16� cannot have power. Therefore, in Eq. �16� if the equality sign
is valid �the constraint is active� then the associated generalized
constraint force is not zero, and if the inequality is valid �the
constraint is passive� then motion exists for those generalized di-
rections of the SCM and the associated generalized constraint
force is zero. These further conditions on the generalized con-
straint forces can be represented as

uc
i �i = 0 and u̇c

i �i = 0, i = 1, . . . ,r �18�

at the velocity and acceleration levels, where �i represents the
elements of �. These give r equations for each level of kinematics
�velocity and acceleration�. Pfeiffer and Glocker �19,21� called
this set of conditions the corner law of unilateral contacts. Pa-
pastavridis �6� proved the necessity for the existence of the second
set of Eq. �18�. It is important to note that Eq. �18� is equivalent to
uc

T�=0 and u̇c
T�=0 under the conditions of Eqs. �16� and �17�.

For this case the dynamic equations of constrained motion can
be first written in the same forms as given by Eq. �81� or Eq. �90�
of Part I. In this case, particularly the representation in terms of
the local parametrization of the SCM can play an important role
together with conditions of Eqs. �16�–�18�. These dynamic equa-
tions of constrained motion in local parametrization can be written
based on Eq. �90� of Part I as

− �AM−1AT�−1u̇c − zc + �AM−1AT�−1AM−1fA + � + ���� = 0

�19�

For a given state of motion, both u̇c and � represent unknowns.
Therefore, we generally have r equations for 2r unknowns.

Equations �19� and �18� �taken at the acceleration level� repre-
sent a set of 2r algebraic equations for the 2r unknowns u̇c and �.
They can be solved together with the constraint conditions of Eqs.
�16� and �17�. The set of equations and inequalities �Eqs.
�16�–�19�� characterizes the constraint dynamics of the system,
which is expressed in terms of the local, minimum parametriza-
tion for the SCM. This mathematically represents a complemen-
tarity problem expressed in minimum coordinates with respect to
the unilateral constraints.

The above set of equations and inequalities for constrained mo-
tion is valid no matter whether the constraints are realized via
ideal or nonideal interfaces. It is interesting to note a major dif-
ference between the solutions of the constraint dynamics equa-
tions for the case of bilateral and unilateral constraints. For bilat-
eral constraints, u̇c is fully specified. The constraint dynamics
equations are linear in the generalized constraint forces �provided
that � is a linear function of ��, and the solution for them can
simply be obtained via substitution �ideal realization� or the solu-
tion of linear equations �nonideal realization�. On the other hand,
for unilateral constraints, u̇c is only partially specified, the con-
straint dynamics equations need to be handled together with the
constraints and the conditions rising out from the nature of the
constraint forces. In that case the formulation becomes nonlinear
even for ideal realization, and the solution for the generalized
constraint forces and for u̇c can only be obtained via iterative
methods in general. We also have to note that for the case of

models with redundant constraints and Coulomb friction, solution
nonuniqueness and/or nonexistence problems can occur for both
bilateral and unilateral constraints. Local parametrization is pos-
sible even for the case of redundant constraints via the appropriate
determination of � �Part I�, and based on this, via the redefinition
of the originally redundantly given A. However, for this case, the
determination of each individual constraint force component asso-
ciated with the original redundant constraint configuration may
not be possible. Therefore, the actual “distribution” of the non-
ideal forces caused by Coulomb friction may not be determined,
which can cause problems with the solution. This was also pointed
out in Ref. �19�. One possibility to remedy this problem is to
examine the model employed, and possibly introduce more de-
grees of freedom to include additional information about the
physical system �e.g., flexibility of certain elements�. This can
then remove constraint redundancy.

2.2.1 Ideal Realization. Similar to bilateral constraints, in this
case, the imposition of the constraints does not induce nonideal
forces, which can be represented as

fN = 0, � = 0, � = 0 �20�

Therefore, the constraint dynamics given by Eqs. �16�–�19� may
take the form of a linear complementarity problem, which can be
solved for � and u̇c.

Based on Eq. �82� of Part I, the dynamic equations for admis-
sible motion can be written in global parametrization as

− Mv̇ + GTP̂cGv̇ − Pa
Tc + Pa

TfA = 0 �21�

where based on Eqs. �84� and �85� of Part I

GTP̂cGv̇ = AT�AM−1AT�−1Av̇ = AT�AM−1AT�−1�u̇c − Ȧv�
�22�

for nonredundant constraints and, for example,

GTP̂cGv̇ = GT�AG−1�†Av̇ = GT�AG−1�†�u̇c − Ȧv� �23�

can be used more generally �which also holds for redundantly
constrained systems�. In this case, the solution obtained for u̇c
from the dynamic equations of constrained motion enters into the
equations of admissible motion. Therefore, if global parametriza-
tion is used for the admissible motion, then even in the case of
ideal constraint realization the solution is tied to the constraint
dynamics equations.

In terms of local parametrization, based on Eq. �91� of Part I,
the admissible dynamics equations can be given as

− �BM−1BT�−1u̇a − za + �BM−1BT�−1BM−1fA = 0 �24�

If local parametrization is used in the form of Eq. �24�, then the
admissible dynamics equations can be solved for u̇a independently
of the constraint dynamics equations. However, here we empha-
size again that the local parametrization has to be done properly,
as discussed in Sec. 3, and matrix B must satisfy Eq. �56� of Part
I.

2.2.2 Nonideal Realization. For this case the realization of the
constraints induces nonideal forces that can have an effect on both
constrained and admissible motions. These components are repre-
sented by equations such as Eqs. �74�–�77� given in Part I of this
work. In general,

fN � 0, � � 0, � � 0 �25�

Because of this, the model of the constraint dynamics �Eqs.
�16�–�19�� takes generally the form of a nonlinear complementa-
rity problem expressed in minimum coordinates. In some cases, a
nonlinear complementarity problem can be transformed back into
the form of linear complementarity problems as was illustrated in
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Refs. �19,22�, for example.
Based on Eqs. �82� and �91� of Part I, the dynamic equations for

admissible motion can be written either in global parametrization
as

− Mv̇ + GTP̂cGv̇ − Pa
Tc + Pa

TfA + Pa
TfN = 0 �26�

where GTP̂cGv̇ can be interpreted according to Eq. �22� or Eq.
�23�; or in terms of local parametrization as

− �BM−1BT�−1u̇a − za + �BM−1BT�−1BM−1fA + � = 0 �27�
The solution of the admissible dynamics equations in both global
and local parametrizations is tied to the constraint dynamics for-
mulation. If Eq. �26� is used, then both u̇c and � are needed from

the solution of the constraint dynamics to express the GTP̂cGv̇
and fN terms. If the local parametrization, Eq. �27�, is employed
then only � is necessary to express ����.

In general, we can conclude here that the solution of the dy-
namic equations of admissible motion has a nature similar to that
of the case of bilateral constraints once the quantities from the
solution of the constraint dynamics formulation are known. The
real complication caused by the unilateral nature of the constraints
is that the structure and the solution of the constraint dynamics
formulation can be much more complex. Instead of the relatively
simple structure of bilateral problems, which can be expressed for
the constraint forces, unilateral constraints add additional condi-
tions and make the constraint dynamics nonlinear for all cases and
result in complementarity problems. These problems can further
be transformed, if necessary, to facilitate the numerical evaluation
�e.g., based on the Augmented Lagrangian method �26��.

Pfeiffer and Glocker �19� derived complementarity problems in
terms of a minimum parametrization using coordinates corre-
sponding to the tangential directions of the contact pairs to repre-
sent admissible motion. This gives a powerful formulation. How-
ever, such parametrization of admissible motion does not
correspond to an orthogonal decomposition and does not decouple
the dynamics. Therefore, in their formulation, constrained and ad-
missible motions �characterized by normal and tangential coordi-
nates� are handled together. Also, they assumed that admissible
motion can be fully parametrized by tangential directions of con-
tact pairs, which is not always the case. The formulation presented
in this paper may also offer some additional insight into some
aspects of unilateral problems particularly in terms of the orthogo-
nal decomposition of constrained and admissible dynamics in lo-
cal parametrization. Also, the global parametrization of admissible
motion is a novelty that can have useful features and potential in
unilateral dynamics. These model formulations can also be taken
further to the impulse-momentum level to study impulsive
motion.

3 Example of the Generalized Particle
We will use the example of the generalized particle from Part I

of this work �Fig. 2�. It is described there in detail.

The dynamic equilibrium equations associated with the gener-
alized free-body diagram of this system have been derived in Part
I. These will be used here to develop the formulations for the
constraint specifications.

3.1 Bilateral Constraint. These can be expressed by the fol-
lowing holonomic constraint equation:

� = L �28�

where L is the radius of the sliding block. From this the velocity
and acceleration level expressions can be established for the SCM
as

�̇ = 0, �̈ = 0 �29�

3.1.1 Ideal Realization. In this case there are no nonideal
forces; hence, fN1

=0 and fN2
=0. These expressions together with

the above constraint equations �Eqs. �28� and �29�� can be substi-
tuted into Eqs. �104�, �105�, �115�, and �116� of Part I to yield the
dynamic equations for constrained and admissible motions in both
global and local parametrizations. For this case these can be writ-
ten as follows.

The dynamic equations of constrained motion in global param-
etrization are

�
m1m2x�x2 + y2

m2x2 + m1y2

m1m2y�x2 + y2

m2x2 + m1y2
�� ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�3/2	

+ �
Fxm2x2 + Fym1xy

m2x2 + m1y2

Fxm2xy + Fym1y2

m2x2 + m1y2
� + 
 fR1

fR2

� = 
0

0
� �30�

The dynamic equations of admissible motion in global parametri-
zation can be written as

− 
m1 0

0 m2
�
 ẍ

ÿ
� − �

m1m2x�x2 + y2

m2x2 + m1y2

m1m2y�x2 + y2

m2x2 + m1y2
�� ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�3/2	

+ �
Fxm1y2 − Fym1xy

m2x2 + m1y2

− Fxm2xy + Fym2x2

m2x2 + m1y2
� = 
0

0
� �31�

In this case based on Eq. �115� of Part I, the dynamic equation
of constrained motion in local parametrization can be written as

m1m2�x2 + y2�
m2x2 + m1y2 � ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�3/2	
+

�m2xFx + m1yFy��x2 + y2

m2x2 + m1y2 + � = 0 �32�

The dynamic equation of admissible motion in local parametriza-
tion is obtained based on Eq. �116� of Part I as

− m2x2u̇a − m1x2� ẏẋ

x
−

yẋ2

x2 	 + x2Fy − xyFx = 0 �33�

For this case any possible constrained-admissible dynamics pair-
ings of the four sets of dynamic equations can be used for the
analysis �both forward and inverse dynamics�. The generalized
constraint forces can be determined based on Eqs. �30� and �32� in
both global, fR, and local, �, parametrizations. We also note that
based on Eq. �108� of Part I, the definition of ua has a singularity

0

0

�

�

Fig. 2 A generalized particle moving on a circular block
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at x=0, which needs to be considered when the analysis of admis-
sible motion dynamics is performed using local parametrization.
This can be handled, for example, by redefining ua for the vicinity
of x=0, as was discussed in Part I �1� in more detail.

3.1.2 Nonideal Realization. Let us now consider the case
where the constraint �=L is realized via nonideal contact between
the block and the generalized particle. The constraint force asso-
ciated with this constraint is �. This defines the normal force
component in terms of the local surface geometry of the circular
block. This gives rise to a nonideal force component due to fric-
tional interactions. The direction of this component is also gov-
erned by the local contact geometry �Fig. 2� and acts along the y�
direction. We will use Coulomb’s kinetic friction law to determine
this nonideal force Ff as a function of the constraint force. This
results in

Ff = − sgn��̇��� �34�

where � is the kinetic friction coefficient of the contact and �̇ is
used to specify the direction of the relative tangential velocity of
the generalized particle. Figure 2 also shows the interpretations of
the positive direction of Ff and the necessary coordinate systems
to characterize the contact. From identities cos �=x /�x2+y2 and
sin �=y /�x2+y2, it is straightforward to show that

�̇ =
xẏ − yẋ

x2 + y2 �35�

which can now be used with the generalized coordinates and the
global generalized velocities to determine the sign of the nonideal
force component. Based on Eq. �112� of Part I and Eq. �29� above,
ẋ and ẏ can also be expressed with generalized velocity ua intro-
duced to parametrize the SAM �so that orthogonal decoupling is
possible in the local representation as well�. Force Ff is associated
with the relative motion between the block and the particle and is
along the direction of Cartesian unit vector e�y�=−sin �e�x0

+cos �e�y0
. Therefore, the generalized nonideal force components

associated with generalized velocities ẋ �fN1
� and ẏ �fN2

� can be
written as

fN1
= −

Ffy
�x2 + y2

=
sgn��̇���y

�x2 + y2
, fN2

=
Ffx

�x2 + y2
= −

sgn��̇���x

�x2 + y2

�36�

Equation �36� gives the relationships of Eq. �74� of Part I for this
particular example.

With the expressions of Eqs. �34�–�36�, the nonideal force com-
ponents are completely defined and can be used together with Eqs.
�28� and �29� in the dynamic equilibrium equations of Part I �Eqs.
�104�, �105�, �115�, and �116��. Based on these, the dynamic equa-
tions of constrained motion in global parametrization can be writ-
ten as

�
m1m2x�x2 + y2

m2x2 + m1y2

m1m2y�x2 + y2

m2x2 + m1y2
�� ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�3/2	

+ �
Fxm2x2 + Fym1xy

m2x2 + m1y2

Fxm2xy + Fym1y2

m2x2 + m1y2
� + �

fN1
m2x2 + fN2

m1xy

m2x2 + m1y2

fN1
m2xy + fN2

m1y2

m2x2 + m1y2
�

+ 
 fR1

fR2

� = 
0

0
� �37�

and the dynamic equations of admissible motion in global param-
etrization are

− 
m1 0

0 m2
�
 ẍ

ÿ
� − �

m1m2x�x2 + y2

m2x2 + m1y2

m1m2y�x2 + y2

m2x2 + m1y2
�� ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�3/2	

+ �
Fxm1y2 − Fym1xy

m2x2 + m1y2

− Fxm2xy + Fym2x2

m2x2 + m1y2
� + �

fN1
m1y2 − fN2

m1xy

m2x2 + m1y2

− fN1
m2xy + fN2

m2x2

m2x2 + m1y2
� = 
0

0
�

�38�
The constraint dynamics equation in local parametrization for

the constraint on � can be written, based on Eq. �115� of Part I, as

m1m2�x2 + y2�
m2x2 + m1y2 � ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�3/2	
+

�m2xFx + m1yFy��x2 + y2

m2x2 + m1y2 +
�m2xfN1

+ m1yfN2
��x2 + y2

m2x2 + m1y2

+ � = 0 �39�

The dynamic equation of admissible motion in local parametriza-
tion is obtained, based on Eq. �116� of Part I, as

− m2x2u̇a − m1x2� ẏẋ

x
−

yẋ2

x2 	 + x2Fy − xyFx + x2fN2
− xyfN1

= 0

�40�

Using Eq. �36�, in Eq. �39�

�m2xfN1
+ m1yfN2

��x2 + y2

m2x2 + m1y2 =
�m2 − m1�xy sgn��̇���

m2x2 + m1y2 �41�

and in Eq. �40�

x2fN2
− xyfN1

=
− sgn��̇����x3 + xy2�

�x2 + y2
�42�

Equation �41� also shows that this is a simple, but nontrivial
example2 that is much more complex than an ordinary particle
model. For example, in the case of an ordinary particle, expres-
sion �41� would vanish, and for the constraint dynamics equation
�39� we would get back the same expression we had for the ide-
ally constrained case, Eq. �32�. On the other hand, for this gener-
alized particle, the term of Eq. �41� will not vanish, since m1
�m2 in general, and this makes possible a closed-form illustration
of how nonideal interfaces can affect the constraint forces. For the
ideal case from Eq. �32�

��ideal� = −
m1m2�x2 + y2�
m2x2 + m1y2 � ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�3/2	
−

�m2xFx + m1yFy��x2 + y2

m2x2 + m1y2 �43�

and for the nonideal case from Eqs. �39� and �41�

2As we discussed in Part I, this example represents a meaningful physical system,
e.g., a robot arm with two prismatic joints.
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��nonideal� = −

m1m2�x2 + y2�
m2x2 + m1y2 � ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�3/2	 +
�m2xFx + m1yFy��x2 + y2

m2x2 + m1y2

1 +
�m2 − m1�xy sgn��̇��

m2x2 + m1y2

�44�

Comparing these two expressions we can see that ��nonideal� cannot
be established from ��ideal� via adding a term of a predefined ex-
pression. In the admissible motion dynamics, Eq. �38� or Eq. �40�,
also ��nonideal� needs to be used. This shows that the effect of the
nonideal interface �and the developed nonideal force� on the ad-
missible motion of the system cannot be expressed explicitly as a
function of the constraint force obtained for the ideally con-
strained case.

For this nonideally constrained situation, in principle, all pos-
sible constrained-admissible pairings of the four sets of dynamics
equations could be used too. However, it can be seen that the
global parametrization of the constraint dynamics �Eq. �37�� may
not be the most advantageous in this case �nonideal interface with
Coulomb friction�, since fN1

and fN2
explicitly depend on the

physical contact force � determined in Eq. �44�. This makes the
determination of fR difficult from Eq. �37� alone.

3.2 Unilateral Constraint. Let us consider here the case
where the particle is unilaterally constrained to the block. Then,
the constraint can be expressed at the configuration level by

� � L �45�

From this the velocity and acceleration level expressions can be
established for the SCM for the configuration �=L as

�̇ � 0, �̈ � 0 �46�

3.2.1 Constraint Dynamics. As was discussed in Sec. 2.2, in
the case of the presence of unilateral constraints, the dynamic
equations of constrained motion expressed in local coordinates
can play an important role. For this system Eq. �115� of Part I
represents this equation, which is associated with the constrained
direction. The constraint dynamics equation for the unilateral con-
straint can be written as

−
m1m2�x2 + y2�
m2x2 + m1y2 �̈ +

m1m2�x2 + y2�
m2x2 + m1y2 � ẋ2 + ẏ2

�x2 + y2
−

�xẋ + yẏ�2

�x2 + y2�3/2	
+

�m2xFx + m1yFy��x2 + y2

m2x2 + m1y2 +
�m2xfN1

+ m1yfN2
��x2 + y2

m2x2 + m1y2

+ � = 0 �47�

The nonideal forces can also be expressed for this case according
to Sec. 3.1.2. According to Sec. 2.2, besides Eq. �46�, we can also
write for the unilateral constraint

� � 0 �48�

and

�̈� = 0 �49�

Then, Eq. �47�, the inequality for �̈ in Eq. �46�, and Eqs. �48� and
�49� give a complementarity problem that can be solved for �̈ and
�. If the unilateral contact is ideal, then fN1

= fN2
=0; if it is non-

ideal, then Eqs. �36� and �41� have to be employed.

3.2.2 Ideal Realization of the Unilateral Constraint. As was
discussed, first the constraint dynamics formulation described
above need to be solved. In this particular case, fN1

= fN2
=0. For

admissible motion one possibility is to use the global parametri-
zation represented by Eq. �105� of Part I. In that case, the dynam-
ics of admissible motion can be written as

− 
m1 0

0 m2
�
 ẍ

ÿ
� + �

m1m2x�x2 + y2

m2x2 + m1y2

m1m2y�x2 + y2

m2x2 + m1y2
���̈ − 
 ẋ2 + ẏ2

�x2 + y2

−
�xẋ + yẏ�2

�x2 + y2�3/2�	 + �
Fxm1y2 − Fym1xy

m2x2 + m1y2

− Fxm2xy + Fym2x2

m2x2 + m1y2
� = 
0

0
� �50�

This equation needs �̈ from the solution of the constraint dynam-
ics formulation. If local parametrization �Eq. �116� of Part I� is
employed for admissible motion then the admissible dynamics
equation can be written as

− m2x2u̇a − m1x2� ẏẋ

x
−

yẋ2

x2 	 + x2Fy − xyFx = 0 �51�

This can be solved for the acceleration u̇a independently of the
constraint dynamics formulation.

3.2.3 Nonideal Realization of the Unilateral Constraint. The
nonideal forces fN1

and fN2
can be formulated based on Eqs. �36�

and �41�. Again, the constraint dynamics formulation given in Sec.
3.2.1 needs to be considered first. Then, for admissible motion, the
dynamics in global parametrization can be expressed, according to
Eq. �105� of Part I, as

− 
m1 0

0 m2
�
 ẍ

ÿ
� + �

m1m2x�x2 + y2

m2x2 + m1y2

m1m2y�x2 + y2

m2x2 + m1y2
���̈ − 
 ẋ2 + ẏ2

�x2 + y2

−
�xẋ + yẏ�2

�x2 + y2�3/2�	 + �
Fxm1y2 − Fym1xy

m2x2 + m1y2

− Fxm2xy + Fym2x2

m2x2 + m1y2
�

+ �
fN1

m1y2 − fN2
m1xy

m2x2 + m1y2

− fN1
m2xy + fN2

m2x2

m2x2 + m1y2
� = 
0

0
� �52�

In local parametrization, the dynamic equation of admissible mo-
tion, according to Eq. �116� of Part I, can be given as

− m2x2u̇a − m1x2� ẏẋ

x
−

yẋ2

x2 	 + x2Fy − xyFx + x2fN2
− xyfN1

= 0

�53�
where Eq. �42� can also be employed to simplify the expression.

In this case both global and local parametrizations require the
solution of the constraint dynamics formulation first. For the glo-
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bal parametrization, �̈ and � are needed. For the local description
of admissible motion, only � is necessary from the dynamics of
constrained motion. The local parametrization of admissible mo-
tion defined based on the orthogonal decomposition using non-
holonomic variable ua is definitely a novel feature of this formu-
lation. However, there are several other possible ways to employ
the developed framework for analysis. Another possible formula-
tion involves the use of local parametrization for the dynamics of
constrained motion �Eq. �47�� and global parametrization for the
admissible motion dynamics �Eq. �52��. This can also have
considerable potential in both forward and inverse dynamics
applications.

4 Conclusions
In this paper, bilaterally and unilaterally constrained mechanical

systems were investigated using the generalized free-body dia-
gram. The general case of possibly redundant constraints was con-
sidered. Both ideal and nonideal constraint realizations were ad-
dressed. Novel forms of dynamic equations and representations
were obtained. Only a few particular notes are made here.

For bilateral constraints our equations based on global param-
etrization can be seen as a counterpart of the equations developed
by Udwadia and Kalaba. In their formulation the explicit expres-
sions of the constraint forces is included, while in our equations
they are eliminated. Our equations are also interpreted for the
general case of nonholonomic generalized velocities. The formu-
lation developed in this paper is also better suited for nonideal
interfaces.

In the case of nonideal constraint realization with Coulomb
friction, local parametrization can be the best option for the con-
straint dynamics; and for admissible motion dynamics, both glo-
bal and local parametrizations can be well suited.

For unilateral constraints the local parametrization based on
orthogonal decomposition can be seen as one of the novelties.
Another interesting novel unilateral formulation also appears in
this work. This is based on local parametrization for the constraint
dynamics �leading to a complementarity problem, which needs to
be solved first� and global parametrization for admissible dynam-
ics �that can lead to a set of linear equations for the accelerations�.
These may offer some alternatives and additional insight com-
pared to the known unilateral models presented by Pfeiffer and
Glocker �19�, for example. Further potential of these formulations
in practical applications will be investigated in upcoming works.

The methodology presented also makes it easy to switch be-
tween various models the analyst may want to try for a physical
system �e.g., bilaterally or unilaterally constrained models�.
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Surface Green Function With
Surface Stresses and Surface
Elasticity Using Stroh’s
Formalism
In the present paper, surface Green functions in an anisotropic elastic half-domain sub-
jected to a concentrated force and a line force are derived using Stroh’s formalism
considering surface stress and surface elasticity. Formulation of the boundary condition
based on Stroh’s formalism is presented and is used to derive the surface Green functions.
The displacement field far from the surface is affected only slightly by the surface stress
and elasticity. However, the stress field is influenced to a somewhat greater degree by the
surface stress and elasticity. The influence of the mechanical properties of the surface on
the distributions of displacement and stress near the surface is investigated for various
values of surface elastic modulus and surface stress. The surface stress and surface
elasticity affect the displacements and stresses, respectively, in different manners. Dis-
placement fields in molecular dynamics are compared with those in the Green function,
and it is shown that the results are in fair agreement. �DOI: 10.1115/1.2967893�

1 Introduction
As the size of materials is reduced, the ratio of surface to vol-

ume of structures increases and the surface effect on the mechani-
cal behavior of bulk in materials becomes noticeable. Ibach �1�
reviewed previous research related to surface stress and reported
the importance of surface stress on the deformation in a small
cantilever and on the stabilization of mesoscopic pattern forma-
tion. The energy of atoms near a free surface is different from that
of atoms in bulk. Furthermore, surface stress originated from sur-
face energy affects the mechanical response in the nanoscaled
domain. Recently, Muller and Saul �2� reviewed the effects of
surface stress and surface elasticity on surface phenomena and
surface physics. They reported that the surface Green function can
be used to evaluate the interaction energy of surface steps, ada-
toms, and vacancies produced during a growing process in thin
films. For instance, in a nanoscaled pattern formation on a free
surface, any steps formed will be affected by the reconstruction of
surface atoms due to the interaction between the surface and steps.
Gao and Suo �3� analyzed many patterns formed on a crystalline
substrate absorbing adatoms based on the minimization of free
energy in a system. In their analysis, surface stress was reported to
depend on the concentration, which is the fraction of surface sites
covered by one or two atomic species, and does not depend on
surface strain. A number of studies have investigated pattern for-
mation and the modeling of surface steps using force dipoles and
distributed forces �4–9�. Shenoy and Ciobanu �10� examined the
stiffness of steps on �100�, �110�, and �111� surfaces of cubic
crystals considering surface stresses and showed that surface
stress tractions acting at a relaxed surface step edge can be de-
scribed using an expression using the curvature of the step profile.

As a general approach, Gurtin and Murdoch �11,12� presented a
mathematical framework for the mechanical behavior of material
surfaces, including surface elasticity. They modeled the surface as
a two-dimensional membrane adhering to an underlying bulk ma-
terial. Later, Gurtin et al. �13� discussed deformation of a curved
interface between solid phases and derived local equilibrium con-

ditions that relate these interface stresses to stresses in the bulk.
Thomson et al. �14� derived a static boundary condition taking
into account surface stress and analyzed the stress field around a
crack tip. Koguchi �15� independently derived a dynamic bound-
ary condition considering interfacial stress and the density at an
interface based on the membrane surface model. He analyzed the
contact problem in which an elastic half-region coated with a thin
film was penetrated by an axisymmetric elastic indenter in the
boundary condition �Koguchi �16�� and deduced a new adhesion
formulation, including the Johnson–Kendall–Roberts theory con-
sidering surface stress. In other studies �17–21�, the curvature of a
deformed surface under an external force was taken into consid-
eration in the analyses. Surface elasticity also influences the me-
chanical response in the nanoscaled structures. Duan et al. �22,23�
introduced the surface elasticity effect at nanoscaled inhomogene-
ities into the fundamental framework of micromechanics and
showed the dependence of the elastic moduli on their sizes.

In several studies on the effect of surface stress on the elastic
response of structures, stress analyses for isotropic materials have
been carried out �He and Li �24,25�, Mi and Kouris �26,27��.
However, the mechanical behavior in nanoscaled structures gen-
erally depends on the anisotropy of the crystal. Stroh’s formalism
is an elegant and powerful tool for deriving a surface Green func-
tion in anisotropic elastic bodies. Wu �28� derived three-
dimensional Green functions for anisotropic materials in Stroh’s
formalism using Radon transform. Ting �29–31� and Yang �32�
derived Green functions for general anisotropic elastic materials.
He and Lim �24� derived a surface Green function for isotropic
materials considering surface stress. The surface Green function
can be used for isotropic materials with positive surface elastic
moduli. In previous studies, the surface Green function in aniso-
tropic half-domains when ignoring the surface stress and surface
elasticity was used. In the present paper, the surface Green func-
tion in Stroh’s formalism using the boundary condition consider-
ing the dependency of surface stress on surface strain is deduced
for three-dimensional half-regions. In addition, an explicit solu-
tion will be shown for the two-dimensional case. The effects of
the surface stress and surface elasticity on displacement and stress
fields will then be discussed. Furthermore, displacement fields
near a surface calculated using this formulation are compared with
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those derived from molecular dynamics �MD� calculation, and the
validity of surface Green function will be shown.

2 Boundary Condition Including Surface Stresses and
Surface Elasticity

A semi-infinite anisotropic elastic solid is considered and a rect-
angular Cartesian coordinate system is used in the analysis. It will
be assumed that the elastic medium x3�0 is bounded by a plane
of infinite extent, which we shall take to be x3=0. The x3 axis is
taken normal to this plane to point into the medium. The stress-
strain relationship in anisotropic materials can then be expressed
as follows:

�ij = Cijkl�kl �1�

where �ij is the bulk stress and �kl is the bulk strain.
Now, a boundary condition considering surface stress and sur-

face elasticity is formulated in Stroh’s formalism. Dingreville et
al. �33� presented a framework incorporating surface free energy
into continuum mechanics and discussed the size effect of me-
chanical properties in elastic nanosized structural elements. The
surface energy density function �=S�s depends on the surface
strain �ij

s and may be expressed as a series expansion of surface
strain,

�����
s � = �0 + � ��

����
s �

�
��
s =0

���
s + �1

2

�2�

����
s ����

s ��
��
s =0

�
��
s =0

���
s ���

s

+ = �0 + 	��
0 ���

s +
1

2
d�������

s ���
s + �2�

where �0 �=S0�s0�, 	��
0 , and d���
 are the surface energy density

function, the surface stress tensor, and the surface elasticity for
zero surface strain induced by an external load, respectively. In
addition, S is the surface area and �s is the surface energy.

Surface stress is deduced by differentiating Eq. �2� with respect
to surface strain, ���

s , as follows:

	�� = 	��
0 + d�������

s �3�
Surface stress depends linearly on surface strain. The boundary
condition is written using an equilibrium relationship of surface

stress, bulk stress, and a traction vector ti, as follows �15�:

On the tangential plane of the surface:

�i��i − 	��,� = t� �4�
In the normal direction of the surface,

�i3�i − 	������3 = t3 �5�

where �, �, and �=1,2 correspond to the rectangular coordinate
system on the surface, i=1,2 ,3 corresponds to the rectangular
coordinate systems, the subscript “,” denotes the derivative, ��� is
the curvature tensor, �1 and �2 are the unit vectors in the tangen-
tial direction of the surface, and �3 is the unit normal vector of the
surface.

Substituting Eq. �3� into Eq. �4� yields the following equilib-
rium equation for the tangential direction of the surface:

�i��i − 	��,�
0 − d�������,�

s = t� �6�
The second term of the left-hand side is the contribution of sur-
face stress to the bulk, when the surface stress varies with the
location on a surface. Gao and Suo �3� analyzed the pattern for-
mation considering the surface stress effect due to the concentra-
tion field of the monolayer. In their analysis, the second term in
Eq. �6� contributes mainly to the free energy in the system. When
the surface stress is uniform on the surface, the second term van-
ishes. The third term of the left-hand side is the contribution of
surface elasticity to the bulk.

Substituting Eq. �3� into Eq. �5� yields the following equilib-
rium equation in the normal direction to the surface:

�i3�i − 	������3 = �i3�i − �	��
0 + d�������

s �����3 �7�

where ��� is the curvature of the deformed surface.
It is assumed that a deformed surface may be expressed by

superposing an initial surface profile h�x1 ,x2� and the displace-
ment w0 in the normal direction of the x1-x2 plane. Here, let the
profile of the surface, g, describes as g�x1 ,x2�=h�x1 ,x2�
+w0�x1 ,x2�. The curvature of the surface is then expressed as

�ij =
1

H

�2g

�xi�xj
�8�

where H=�1+ ��g /�x1�2+ ��g /�x2�2.
Assuming w0h and neglecting the second-order infinitesimal

quantity in H yields the following equations:

�ij =
1

�1 + ���h + w0�/�x1�2 + ���h + w0�/�x2�2

�2�h + w0�
�xi�xj

�
1

�1 + ��h/�x1�2 + ��h/�x2�2

� �1 −
1

2
	2��h/�x1���w0/�x1� + ��w0/�x1�2 + 2��h/�x2���w0/�x2� + ��w0/�x2�2

1 + ��h/�x1�2 + ��h/�x2�2 
 + ¯ �
� 	 �2h

�xi�xj
+

�2w0

�xi�xj

 �

1
�1 + ��h/�x1�2 + ��h/�x2�2	 �2h

�xi�xj
+

�2w0

�xi�xj

 = �ij

0 +
1

H0

�2w0

�xi�xj
�9�

where H0=�1+ ��h /�x1�2+ ��h /�x2�2 and �ij
0 = �1 /H0�

���2h /�xi�xj�.
Substituting Eq. �9� into Eq. �7� yields the following equation:

�i3�i − 	������3 = �i3�i − �3�	ij
0 + dij�����

s �	�ij
0 +

1

H0

�2w0

�xi�xj


�10�

and neglecting the second-order infinitesimal quantity yields

=�i3�i − �3
	��

0

H0

�2w0

�x��x�

− �3���
0 d�������

s − �3	��
0 ���

0 �11�

The second and the last terms on the right-hand side are the nor-
mal traction to the surface due to the Laplace pressure, which
arises from surface stress. In particular, the last term acts as re-
sidual stresses due to the initial profile of the surface. Hence, this
term might be neglected when the effect of surface stress on the
mechanical response for external forces is investigated. The third
term is the contribution to the normal traction due to the incre-
ment of in-plane stress. When a stress analysis for a material with
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a curved surface is conducted, the effect of the third term depend-
ing on the initial curvature on bulk stress becomes large. In the
present paper, a surface Green function for a flat surface is de-
rived, i.e., ���

0 =0.

3 Stroh’s Formulation for a Half-Domain With a Flat
Surface

The equilibrium equation for anisotropic materials can be ex-
pressed using the displacement, ui:

Cijkluk,lj = 0 �12�

Now, we introduce the two-dimensional spatial Fourier transforms
applied to the in-plane coordinates �x1 ,x2� of the displacement
and the stress components defined by the pair:

f̃��1,�2,x3� =�
−�

+��
−�

+�

f�x1,x2,x3�ei��1x1+�2x2�dx1dx2

f�x1,x2,x3� =
1

�2��2�
−�

+��
−�

+�

f��1,�2,x3�e−i��1x1+�2x2�d�1d�2

�13�

Applying the 2D Fourier transform to the governing equation
�12�, it becomes an ordinary differential equation as �Ting �31�;
Yang and Pan �32�; Willis �34��

Ci�k�����ũk + i�Ci�k3 + Ci3k����ũk,3 − Ci3k3ũk,33 = 0 �14�

Here, a general solution for Eq. �14� can be expressed as follows:

ũ��1,�2,x3� = ae−ip�x3 �15�

where p and a satisfy the following eigenrelation:

Q + p�R + RT� + p2T�a = 0 �16�

where Qik=Cijksnjns, Rik=Cijksnjms, and Tik=Cijksmjms with
n= �n1 , n2 , 0�= �cos � , sin � , 0�T and m= �0,0 ,1�T.

Matrix forms of the boundary condition are deduced using Eqs.
�6� and �10�. Boundary conditions in the tangential and normal
directions to the surface, respectively, can be expressed as

t� = C�3k�uk,� + C�3k3uk,3 − d����u�,��

t3 = 	C33k�uk,� + C33k3uk,3 − 	��
0 �2w0

�x��x�

�3 �17�

where ��1 ,�2 ,�3���0,0 ,1�.
Taking w0 to be u3 at the surface and applying Fourier trans-

forms with x1 and x2 to Eq. �17� yields

t̃� = − i��C�3k�ũk + C�3�3ũk,3 + d��������ũ�

t̃3 = − i��C33k�ũk + C33k3ũk,3 + 	��
0 ����ũ3 �18�

and the use of Eq. �15� then yields

t̃� = − i��C�jksmjns + pC�jksmjms�ak + i�d����n�n�a��e−ip�x3

t̃3 = − i��C3jksnsmj + pC3jksmsmj + i�	��
0 n�n�mk�ake

−ip�x3

�19�

where ��1 ,�2�= ��n1 ,�n2�. Hence,

t̃ = − i��b + i�F�e−ip�x3 �20�

where

b = �RT + pT�a = −
1

p
�Q + pR�a �21�

and

F = �d1�1�n�n� d1�2�n�n� 0

d2�1�n�n� d2�2�n�n� 0

0 0 	��
0 n�n�

�a �22�

The general solutions are obtained by superposing three solutions
of Eqs. �15� and �20� associated with pj and a j, j=1,2 ,3, which
are eigenvalues and the corresponding eigenvectors, respectively:

ũ��1,�2,x3� = A�e−ip
*

�x3�q

t̃��1,�2,x3� = − i��B + i�F��e−ip
*

�x3�q �23�

where F is a real matrix, A= �a1 , a2 , a3�, B= �b1 , b2 , b3�, and

�e−ip
*

�x3�=diag�e−ip1�x3 , e−ip2�x3 , e−ip3�x3�, and q is a complex
vector to be determined.

4 Three-Dimensional Surface Green Function
for Anisotropic Materials

Now, let us consider the case in which a uniform force p is
distributed on a surface, x3=0. The applied force can then be
expressed as

t�x1,x2� = pH��a� − x1���b� − x2� �24�

where H�x� is the Heaviside step function: H�x�=1�x�0�,
1 /2�x=0�, 0�x�0�.

Fourier transform is applied to Eq. �24�, and the following
equation is derived:

t̃��1,�2� = 4p
sin �1a

�1

sin �2b

�2
�25�

Equating Eq. �25� to Eq. �20� for x3=0 yields

− i��B + i�F�q = 4p
sin �1a

�1

sin �2b

�2
�26�

Solving Eq. �26� with respect to q yields

q = 4
i

�
�B + i�F�−1p

sin �1a

�1

sin �2b

�2
�27�

and substituting this q into Eq. �23� yields

ũ��1,�2,x3� = 4
i

�
A�e−ip

*
�x3��B + i�F�−1p

sin �1a

�1

sin �2b

�2

t̃��1,�2,x3� = 4�B + i�F��e−ip
*

�x3��B + i�F�−1p
sin �1a

�1

sin �2b

�2

�28�

Here, pj of the positive imaginary part is used, because when x3
goes to −�, the displacement is finite. The corresponding
physical-domain solutions can be derived by the inverse Fourier
transform for the transformed-domain solutions, Eq. �28�.

u�x1,x2,x3� =
i

�2�
−�

� �
−�

�
1

�
A�e−ip

*
�x3��B + i�F�−1p

�
sin �1a

�1

sin �2b

�2
e−i��1x1+�2x2�d�1d�2 �29�

t�x1,x2,x3� =
1

�2�
−�

� �
−�

�

�B + i�F��e−ip
*

�x3��B + i�F�−1p

�
sin �1a

�1

sin �2b

�2
e−i��1x1+�2x2�d�1d�2 �30�

Here, a solution for a surface concentrated force vector f can be
derived using the formula of lim�→0�sin � /��=1. Thus,
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p lim
a→0

b→0

a sin �1a

�1a

b sin �2b

�2b
= abp �31�

and since f is the total force applied to the area 4ab, f is equal to
4abp.

Next, let us integrate the equations and replace p with f in Eqs.
�29� and �30�. The same equations can be derived using t
= f
�x1�
�x2�. Here, 
�x� is Kronecker’s delta. Before proceeding,
the inverse matrix of �B+ i�F� is expanded and arranged with
respect to �. Here, �B+ i�F�−1 is expressed as W���, which yields

Wlm = wlm�
j=1

3
gjlm

� − hjlm
�32�

Now, let us introduce polar coordinate systems related to �x1 ,x2�
by x1=r cos �0 and x2=r sin �0, and ��1 ,�2� by �1=� cos � and
�2=� sin �. Then, the displacement and traction vectors can be
expressed using d�1d�2=�d�d� as follows:

u�r,�0,x3� =
i

4�2�
0

2� ��
0

�

A�e−ip
*

�x3�W���e−ir� cos��−�0�d��fd�

t�r,�0,x3� =
1

4�2�
0

2� ��
0

�

��B + i�F�

��e−ip
*

�x3�W���e−ir� cos��−�0�d��fd� �33�

Here, matrices A, B, F, and W and eigenvalue p have the follow-
ing angular dependences:

p��� = − p̄�� + ��, A��� = Ā�� + �� ,

B��� = − B̄�� + ��, F��� = F̄�� + ��

W��� = − W̄�� + �� �34�

The overbar symbol indicates a conjugate complex variable. Us-
ing Eq. �34� and integrating the first term in Eq. �33� with respect
to � yield

u�r,�0,x3� =
i

4�2�
0

� ��A�
0

�

�e−i��p
*

x3+r cos��−�0���W���

− Ā�
0

�

�ei��p̄
*

x3+r cos��−�0���W̄����d��fd�

=
− 1

2�2 Im�
0

�

A�fd� �35�

where

�rk = wrk�
j=1

3 �
0

�
gjrk

� − hjrk
e−i��kd� = wrk�

j=1

3

gjrke
−ihjrk�k��0,− ihjrk�k�

�36�

Here, �r= prx3+r cos��−�0� and ��a ,z�=�z
�ta−1e−tdt is the incom-

plete Gamma function. Traction vector t can be arranged as

t�r,�0,x3� =
1

4�2�
0

2� ��
0

�

��B + i�F��e−i��
*�W���d��fd�

=
1

2�2 Re�
0

�

�fd� �37�

where

�rk = �
n=1

3

�
j=1

3 �
0

�

��brn + i�Frn�wkn
gjkn

� − hjkn
e−i��nd�

= �
n=1

3

�
j=1

3

wkngjkn�
0

� ��brn + iFrnhkn� + iFrn�

+
iFrnhjkn + brn

� − hjkn
hjkn�e−i��nd�

= �
n=1

3

�
j=1

3

wkngjkn�− i�brn + iFrnhkn�
�n

−
iFrn

�n
2

+ �iFrnhjkn + brn�hjkne−ihjkn�n��0,− ihjkn�n�� �38�

where brn represents the component at the rth row and nth column
in matrix B.

5 Surface Green Function for a Surface Concentrated
Line Force

When a concentrated line force is applied at x1=0 in a surface
of anisotropic half-domain �x3�0�, the surface Green function is
easily obtained following the above analysis:

t�x1,x2,0� = f2
�x1� �39�

where f2= �f1 , f2 , f3�. Applying Fourier transform to Eq. �39�
yields

t̃��1,�2,0� =�
−�

� �
−�

�

f2
�x1�ei��1x1+�2x2�dx1dx2 = f2
��2�

�40�

Using Eq. �23� and solving this equation with respect to q yields

q =
i

�
�B + i�F�−1f2
��2� �41�

Substituting Eq. �41� into Eq. �23� yields

ũ��1,�2,x3� =
i

�
A�e−ip

*
�x3��B + i�F�−1f2
��2�

t̃��1,�2,x3� = �B + i�F��e−ip
*

�x3��B + i�F�−1f2
��2� �42�
Applying inverse Fourier transform to Eq. �42� yields

u�x1,x3� =
i

4�2�
−�

� �
−�

�
1

�
A�e−ip

*
�x3��B + i�F�−1f2
��2�

�e−i��1x1+�2x2�d�1d�2

=
i

2�
�

−�

�
1

�
A�e−ip

*
�x3��B + i�F�−1f2e−i�1x1d�1

=
− 1

�
Im�

0

�
1

�1
A�e−ip

*
�1x3��B + i�1F�−1f2e−i�1x1d�1

t�x1,x3� =
1

�
Re�

0

�

�B + i�1F��e−ip
*

�1x3��B + i�1F�−1f2e−i�1x1d�1

�43�
The inverse matrix is then expanded and arranged with respect to
�, which yields

u�x1,x3� =
− 1

�
Im�

0

�

A�e−i�1�p
*

x3+x1��K��1�f2d�1
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t�x1,x3� =
1

�
Re�

0

�

�B + i�1F��e−i�1�p
*

x3+x1��W��1�f2d�1

�44�

where K��1�= �B+ i�1F�−1 /�1. Here, the element of matrix K can
be expressed as

Klm =
k1lm

�1
+ k2lm�

j=1

3
v jlm

�1 − rjlm
�45�

The displacement and traction vectors are then deduced by inte-
grating the first equation in Eq. �44�.

uj�x1,x3� =
− 1

�
Im�ajl�k1lm��E − ln�− �x1 + pmx3�� +

�

2
i�

+ k2lm�
j=1

3

v jlme−irjlm�x1+pmx3���0,− irjlm�x1 + pmx3���� fm

�46�

tr�x1,x3� =
1

�
Re �

n=1

3

�
j=1

3

�
k=1

3

fk�
0

�

�brn + i�1Frn�

�
wkngjkn

�1 − hjkn
e−i�1�pkx3+x1�d�1

=
1

�
Re �

n=1

3

�
j=1

3

�
k=1

3

fkwkngjkn� Frn

x1 + pkx3
− �brn + iFrnhjkn�

� e−ihjkn�x1+pkx3���0,− ihjkn�x1 + pkx3��� �47�

where �E represents Euler’s constant, and wkn, gjlm, and hjlm are
the constants in Eq. �47�.

6 Displacements and Stress Fields for a Half-Domain
of [111] Surfaces

6.1 Mechanical Property of [111] Surface. First, surface
stress and surface elastic moduli are calculated using MD. Here,
the material used in the analysis is Fe. The Finnis–Sinclair �FS�
potential function �35� is used to calculate the interatomic force.
The FS potential function for Fe is expressed as follows:

Etot =
1

2 �
���

V�r��� − A�
�

F���� �48�

where r�� is the distance between atoms � and �, F��� is an
embedded atom function and is expressed as F����=���, and ��

is the electron density and is given by ��=����r���. Furthermore,
V�r� and F�r� are the contributions of repulsion force between an
atom and the electron density. Here, V�r� and ��r� are expressed
by the following equations:

��r� = �
k=1

2

Ak�Rk − r�3H�Rk − r� �49�

V�r� = �
k=1

6

ak�rk − r�3H�rk − r� �50�

where H�r� is the Heaviside step function, a1=−36.559853 eV,
a2=62.416005 eV, a3=−13.155649 eV, a4=−2.721376 eV, a5
=8.761986 eV, a6=100.0 eV, A1=1.08 eV, A2=0.99 eV, R1
=1.18a0, R2=1.15a0, r1=0.93a0, r2=0.866025a0, r3
=72.868366a0, r4=−100.944815a0, r5=1.3a0, r6=1.2a0, and

a0�=0.28665 nm� is the lattice constant of Fe.
Surface stress can be calculated using interpotential energy, ui,

for one atom in a unit cell, as follows:

	�� =
1

Ac
�

i

�ui

����

�51�

where Uc=�ui, Uc is the surface energy per cell, i is an atom, �
and � are the directions of the coordinates, and Ac is the surface
area of a unit cell.

The model for analysis is consisted of 60 atomic layers in the
z-direction for calculating the surface stress tensor and surface
elastic moduli. The sizes of the unit cell are 2.809 nm in the
x-direction, 1.622 nm in the y-direction, and 4.965 nm in the
z-direction. Here, �x1 ,x2 ,x3� corresponds to �x ,y ,z�. In the relax-
ation procedure of MD, the temperature in the system increases
from 0 K at the initial state, to 1.0 K at 1000 steps, and remains at
1.0 K until 3000 steps. The temperature then decreases to 0 K at
8000 steps and remains at 0 K until 10000 steps. After the relax-
ation, the surface stress is calculated using Eq. �51� following
Ackaland et al. �36�.

Figure 1 shows the variation of surface stress with the distance
from the surface. The surface stress is not localized only at the
surface, and, as is often the case, the stress profile is oscillating
within 1 nm from the surface, i.e., tension, compression, tension,
and so on. By algebraic sum, the surface stress tensors for Fe are
obtained as 	xx=	yy =−0.357 N /m and 	xy =0. Furthermore, sur-
face elastic moduli, d����, are determined following Izumi et al.
�37� and the values of elastic moduli used in the analysis are
shown in Tables 1 and 2, respectively. Here, transformation be-
tween Cijks and C�� is accomplished by replacing the subscripts ij
�or ks� by � �or �� using the following rules: ij �or ks� 11 to � �or
�� 1, 22 to 2, 33 to 3, 23 or 32 to 4, 31 or 13 to 5, and 12 or 21
to 6.

6.2 Elastic Fields for a Normal Force fz in a Half-Domain
With the Surface [111]. First, the distributions of the displace-
ment and the stress component for fz=1 nN acting at the origin
are calculated using Eqs. �35� and �37�, as shown in Figs.
2�a�–2�d�. The mapped area is −10 nm�x�10 nm and −10 nm
�z�−0.1 nm at y=0. Figures 2�a� and 2�b� show the distribu-
tions of displacements ux and uz. The results considering and ig-
noring the surface stress and surface elasticity are represented by
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Fig. 1 Layer decomposition of the two components of the sur-
face stress tensor

Table 1 Surface elastic moduli „N/m…

d1111 d2222 d1122 d1212

−14.27 −14.27 −4.39 −4.94
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a solid line and a dashed line, respectively. Both distributions in
the mapped area are in good agreement. The displacement ux is
asymmetric with respect to the y-axis due to the crystal anisotropy
of the surface �111�. The maximum values of ux are 2.54
�10−3 nm and 2.70�10−3 nm, respectively, when considering
and ignoring the surface stress and surface elasticity. The maxi-
mum values of uz are 2.22�10−2 nm and 2.46�10−2 nm, respec-
tively, when considering and ignoring the surface stress and sur-
face elasticity. The maximum difference in ux between these
results occurs near the surface around the acting position of the
force. Figures 2�c� and 2�d� show the distributions of stresses �xz
and �zz, respectively The distributions of stress, �zz, when consid-
ering and ignoring the surface stress and surface elasticity are
slightly different but those of �xz are approximately the same at
the location far from the surface. The maximum values of �zz are
53.0 Pa and 64.4 Pa, respectively, when considering and ignoring
surface stress and surface elasticity. The maximum value when
considering the surface stress and surface elasticity is lower than
that when ignoring the surface stress and surface elasticity. The
maximum stress occurs at the location at which fz acts.

Next, the elastic fields near the surface �111� are investigated
for various values of surface stress and surface elasticity. The
elastic fields are calculated using the surface elastic moduli shown
in Table 1 for various values of surface stress, i.e., m	��. Figures
3�a�–3�d� show the distributions of the displacement and stress at
y=0 and z=−0.05 nm for several values of m. In this analysis, a
force of 1.0 nN is applied at the origin in the z-direction. Figures
3�a� and 3�b� show the influence of m for surface stress on ux and
uz, respectively. The influence of surface stress on the displace-
ment, ux, is less than that on the displacement uz. In particular,
when m increases, surface stress has a significant effect on uz near
the loading point. The displacements when ignoring the surface
stress and surface elasticity are larger than those when considering
the surface stress and surface elasticity. However, even if m varies
greatly, ux does not vary greatly. Surface stress affects the bulk
stress, �zz, through the curvature of the surface and so suppresses
deformation in the normal direction more than in the tangential
direction.

Figures 3�c� and 3�d� show the distributions of �xz and �zz
along the x-axis. In contrast to the effect of m on the displace-
ments, �xz is affected greatly by the variation of m for surface
stress. Figure 3�a� shows that the strain, �xx, deduced from the
derivative of ux with respect to x becomes large with decreasing
m. Hence, when m decreases, dijkl�kl in Eq. �17� increases signifi-
cantly, and the bulk stress, �xz, then becomes large. The variation
of stress, �zz, for m is small. Since the curvature of the surface,
�2uz /�x2, becomes small with increasing surface stress multiplied
by m, the product of the curvature and surface stress becomes
approximately constant. Here, the difference between the result
for small m and that for no surface stress or surface elasticity is
attributed to the surface elasticity.

Figures 4�a�–4�d� show the distributions of displacement and
stress at y=0 and z=−0.05 nm for several values of m. Here, the
elastic fields are calculated while maintaining the surface stress as
	xx=	yy =−0.357 N /m, 	xy =0 for various values of surface elas-
ticity, i.e., mdijkl. The influence of m on ux is shown in Fig. 4�a�,
and ux becomes small with increasing m in the same manner, as
shown in Fig. 3�a�. However, ux is affected by the variation of m
for surface elasticity more than that for surface stress. Figure 4�b�
shows a semilog plot of uz with respect to the x-coordinate. Dis-
placement uz is suppressed by the surface stress and surface elas-

Table 2 Material properties used in analysis „GPa…

C11 C12 C13 C15 C22 C23 C25 C33 C44 C46 C55 C66

300.09 111.583 97.257 20.261 300.09 97.257 −20.261 314.417 79.927 −20.261 79.927 94.253
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Fig. 2 Distributions of displacement and stress at y=0 for fz
=1.0 nN. „a… Displacement ux „surface stress and elasticity:
solid line, Min: −1.37Ã10−3 nm, Max: 2.54Ã10−3 nm, no surface
stress or elasticity: dashed line, Min: −1.50Ã10−3 nm, Max:
2.70Ã10−3 nm…. „b… Displacement uz „surface stress and elas-
ticity: solid line, Max: 2.22Ã10−2 nm, no surface stress or elas-
ticity: dashed line, Max: 2.46Ã10−2 nm…. „c… Stress �xz „surface
stress and elasticity: solid line, Min: −13.9 Pa, Max: 15.5 Pa, no
surface stress or elasticity: dashed line, Min: −12.4 Pa, Max:
14.1 Pa…. „d… Stress �zz „surface stress and elasticity: solid line,
Min: −0.03 Pa, Max: 53 Pa, no surface stress or elasticity:
dashed line, Min: −0.04 Pa, Max: 64.4 Pa….
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ticity and is approximately constant within 0.01 nm of the
x-coordinate. The effect of m for surface elasticity on uz is less
than that for surface stress. The distribution of bulk stress, �xz, is
shown in Fig. 4�c�. In contrast with the results shown in Fig. 3�c�,
�xz increases with increasing m and approaches the stress distri-

bution considering surface stress only as m decreases. This is due
to the amplification of m of the surface elasticity, i.e., mdijkl�kl in
Eq. �17�. Figure 4�d� shows a semilog plot of the bulk stress, �zz,
with respect to the x-coordinate. Stress, �zz, reduces slightly with
decreasing m. This is due to the increase of curvature, �2uz /�x2,
with decreasing m, as shown in Fig. 4�b�. When the curvature
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Fig. 3 Distribution of displacements and stresses for various
m values of surface stress along the x-axis at y=0 and z
=−0.05 nm for fz=1.0 nN. „a… displacement ux; „b… displacement
uz; „c… stress �xz; „d… stress �zz.
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(d)

Fig. 4 Distribution of displacements and stresses for various
m values of surface elasticity along the x-axis at y=0 and z
=−0.05 nm for fz=1.0 nN. „a… Displacement ux; „b… displacement
uz; „c… stress �xz; „d… stress �zz.
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becomes large, �zz is suppressed because the product of the cur-
vature and the surface stress becomes large. Here, the surface
stress does not vary.

6.3 Elastic Fields for a Tangential Force fx in a Half-
Domain With the Surface [111]. The distributions of displace-
ments and stress components for fx=1 nN acting at the origin are
shown in Figs. 5�a�–5�d�. Figures 5�a� and 5�b� show the distri-
butions of displacements ux and uz. Both distributions in the
mapped area are in fairly good agreement. The maximum values
of ux are 8.27�10−3 nm and 1.16�10−2 nm, respectively, when

1.1e-03

6.0e-04

4.0e-04

3.0e-04

2.0e-04

1.5e-04

-10 -5 0 5 10

-2.5

-5.0

-7.5

-10.0

x-coordinate , nm

z
-c
o
o
rd
in
a
te
,
n
m

x-coordinate , nm

1.5e-04

2.0e-04

3.0e-04

4.0e-04

6.0e-04

1.1e-03

(a)

-3.0e-04
3.0e-04

-2.0e-04
2.0e-04

-1.0e-04

1.0e-04

-5.0e-05
7.0e-05

-4.0e-055.0e-05

-10 -5 0 5 10

-2.5

-5.0

-7.5

-10.0

z
-c
o
o
rd
in
a
te
,
n
m

x-coordinate , nm

5.0e-05 -4.0e-05

-5.0e-05

-1.0e-04

-2.0e-04
3.0e-04

-3.0e-04

7.0e-05

1.0e-04

2.0e-04

(b)

5.0e-03

1.0e-02

2.0e-03

1.0e-032.0e-03

1.0e-03 0.0e+00
0.0e+00

1.9e-07 1.9e-07

1.0e-01 1.0e-01

1.0e-02

5.0e-03

2.0e-03

1.0e-03

1.0e-03

2.0e-03

5.0e-03

1.0e-02

-10 -5 0 5 10

-2.5

-5.0

-7.5

z
-c
o
o
rd
in
a
te
,
n
m

x-coordinate , nm

1.9e-071.9e-07
1.0e-03

0.0e-00

1.0e-03

2.0e-03

5.0e-03

1.0e-02

1.0e-011.0e-01

1.0e-02

2.0e-03

5.0e-03

0.0e-00

1.0e-03

1.0e-03

2.0e-03

5.0e-03

1.0e-02

(c)

-1.0e-03

-2.0e-03

-5.0e-03

2.0e-03

5.0e-03

8.0e-03

2.0e-02 -2.0e-02

5.0e-02 -5.0e-02

1.0e-03

-10 -5 0 5 10

-2.5

-5.0

-7.5

-10.0

z
-c
o
o
rd
in
a
te
,
n
m

x-coordinate , nm

-1.0e-03

-2.0e-03

-5.0e-03

-2.0e-02

-5.0e-02

2.0e-03

1.0e-03

5.0e-03

8.0e-03

2.0e-02

5.0e-02

(d)

Fig. 5 Distributions of displacement and stress at y=0 for fx
=1.0 nN. „a… displacement ux „surface stress and elasticity:
solid line, Max: 8.27Ã10−3 nm, no surface stress or elasticity:
dashed line, Max: 1.16Ã10−2 nm…. „b… Displacement uz „surface
stress and elasticity: solid line, Min: −1.34Ã10−3 nm, Max:
1.97Ã10−3 nm, no surface stress or elasticity: dashed line, Min:
−3.72Ã10−3 nm, Max: 4.98Ã10−3 nm…. „c… Stress �xz „surface
stress and elasticity: solid line, Min: −0.0053 Pa, Max: 9.30 Pa,
no surface stress or elasticity: dashed line, Min: −1.60 Pa, Max:
9.60 Pa…. „d… Stress �zz „surface stress and elasticity: solid line,
Min: −4.0 Pa, Max: 6.38 Pa, no surface stress or elasticity:
dashed line, Min: −31.0 Pa, Max: 40.0 Pa….
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Fig. 6 Distribution of displacements and stresses for various
m values of surface stress along the x-axis at y=0 and z
=−0.05 nm for fx=1.0 nN. „a… Displacement ux; „b…; displace-
ment uz; „c…; stress �xz; „d… Stress �zz.
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considering and ignoring the surface stress and surface elasticity.
The maximum values of uz are 1.97�10−3 nm and 4.98
�10−3 nm, respectively, when considering and ignoring the sur-
face stress and surface elasticity. Figures 5�c� and 5�d� show the
distributions of stresses �xz and �zz, respectively. The distributions
of stress, �xz, when considering and ignoring the surface stress

and surface elasticity are slightly different, except around the ori-
gin, but those of �zz are approximately the same. The maximum
values of �zz are 6.4 Pa and 40.0 Pa, respectively, when consider-
ing and ignoring the surface stress and surface elasticity. The
maximum value when considering the surface stress and surface
elasticity is lower than that when ignoring the surface stress and
surface elasticity.

The stress distributions of �zz for fz and �xz for fx are influ-
enced noticeably by the surface stress and surface elasticity. Note
that these stress components are closely related to the direction of
the external forces from Eqs. �4� and �5�.

Next, the elastic fields are calculated using the surface elastic
moduli shown in Table 1 for various values of surface stress, i.e.,
m	��. Figures 6�a�–6�d� show the distributions of displacement
and stress along the x-axis at y=0 and z=−0.05 nm. Even if m of
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(d)

Fig. 7 Distribution of displacements and stresses for various
m values of surface elasticity along the x-axis at y=0 and z
=−0.05 nm for fx=1.0 nN. „a… Displacement ux; „b… displacement
uz; „c… stress �xz; „d… stress �zz.
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(b)

Fig. 8 Distribution of displacement, ux, for fz=1 nN against the
distance from the surface. „a… Displacement, uz, for various m
values of surface stress; „b… Displacement, uz, for various m
values of surface elasticity.

Surface

Surface

x

y

z

periodic boundary in the x- and y- directions

a

b

d

c

atom

Fig. 9 Model for MD analysis with an atom on the surface. The
dimensions of this model are a=14.74 nm, b=14.994 nm, c
=10.4995 nm, and d=0.27 nm. The total number of atoms is
186,481.
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surface stress is varied, ux and uz vary only slightly. It is assumed
that the displacements are only slightly affected by the variation
of surface stress due to the tangential force. As mentioned before,
surface stress affects the bulk normal stress through the surface
curvature, and the tangential force is not directly related to the
normal stress. Hence, ux varies only slightly with the variation of
m. As shown in Fig. 6�c�, even if m is varied significantly, �xz
varies only slightly. However, the distribution near the loading
point when considering the surface stress and surface elasticity is
significantly different than that when ignoring the surface stress
and surface elasticity. The distribution of �zz shown in Fig. 6�d�
reverses gradually with respect to the origin with varying the m
value. This change is attributed to surface stress, because the
product of the surface stress, m	��, and the curvature becomes
large due to a small variation of curvature with the increase of m.
Furthermore, these results indicate that surface elasticity signifi-
cantly influences the distributions of displacement and stress.

Figures 7�a�–7�d� show the displacements and stresses calcu-
lated holding the value of surface stress for various values of
surface elasticity, i.e., mdijkl. These results are obtained at y=0
and z=−0.05 nm. Both ux and uz are reduced with increasing m.
As m decreases, the displacement when considering the surface
stress and surface elasticity approaches that when ignoring the
surface stress and surface elasticity. Figure 7�c� shows the distri-
bution of stress, �xz, along the x-axis. Stress, �xz, does not vary
much with the variation of m. Figure 7�a� shows that when m
becomes large, strain �xx near the surface decreases. Hence, stress
�xz does not vary significantly with m, because the product of �xx
and the surface elastic modulus does not vary. Stress, �zz, shown
in Fig. 7�d� decreases as m increases. This is due to the decrease

in surface curvature with the increase of m, because �zz is directly
related to the curvature and surface stress. Here, the surface stress
does not vary.

6.4 Distribution of uz for fz Against the Distance From the
Surface. Figure 8 shows a log-log plot of displacement uz for fz
=1 nN at x=y=0 with respect to the distance from the surface.
Figure 8�a� shows the result calculated using the value of surface
elasticity for various values of surface stress. Displacement uz was
found to be influenced significantly by surface stress. Displace-
ment uz when considering surface stress and surface elasticity
increases as the surface is approached. However, uz when consid-
ering the surface stress and surface elasticity becomes smaller
than that when ignoring the surface stress and surface elasticity.
Figure 8�b� shows the result calculated using the value of surface
stress for various values of surface elasticity. Figure 8�b� shows
that even if the surface elasticity is varied, uz varies only slightly.
Figure 8�a� shows that the influence of surface stress on uz is
significant within 1 nm from the surface. This result is in agree-
ment with the distance from the surface obtained while varying
the surface stress, as shown in Fig. 1.

6.5 Comparison of Displacement Fields in MD and the
Surface Green Function. Figure 9 shows a model in which an
atom is fixed at a position of z=d from the surface. The atom is
placed near an atom in the surface. Here, d is 0.27 nm, and the
location is slightly farther than the distance between layers of
0.2482 nm. Figure 10 shows the displacement fields calculated
using MD and the surface Green function. The results for MD
may be affected slightly by the periodic boundary condition in the

(a) ux in MD

(b) ux in Green function

(c) uy in MD

(d) uy in Green function

(e) uz in MD

(f) uz in Green function

Fig. 10 Comparison of displacements for fz=1.21 nN in the z=−0.05 nm plane
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x- and y-directions. The displacement for the Green function is at
z=−0.05 nm for fz=1.21 nN. Figures 10�a� and 10�b� show the
displacement field of ux. The deformation of approximately
x=−3 nm shown in Fig. 10�a� may be due to the periodic bound-
ary condition. Neglecting the influence of the boundary condition,
the entire distributions of ux in MD and the Green function are in
approximate agreement. Figures 10�c� and 10�d� demonstrate the
displacement fields of uy, and these results are affected slightly by
the periodic boundary condition. The entire distribution of uy for
MD may shift to the left side of the domain. Figures 10�e� and
10�f� show the displacement fields of uz. The displacement field in
MD forms a hexagonal shape reflecting the position of surface
atoms. On the other hand, the displacement field in the Green
function is almost circular. The plane distributions of ux, uy, and
uz in both methods are in fairly good agreement. Figures 11�a� and
11�b� show the x-z cross section at y=0 of the distributions in the
MD and the surface Green function. The solid circle and the thick
line indicate the results for the MD and the Green function, re-
spectively. The obtained results are also in agreement with each
other.

The derived Green functions can include the effect of the sur-
face on the mechanical behavior of anisotropic materials, and it is
hoped that these Green functions will be applied for analyzing the
nanocontact between an indenter and an anisotropic substrate and
developing an adhesion theory such as the Johnson-Kendall-
Roberts �JKR� theory �38� in a nanoscale.

7 Conclusion
In the present paper, three-dimensional surface Green functions

in anisotropic half-domains for a concentrated force and a line
force were derived considering surface stresses and surface elas-
ticity based on Stroh’s formalism. The boundary condition consid-
ering the anisotropy of surface stress and surface elasticity was
deduced. The surface Green function for a line force was derived
in a closed form. The influence of surface stress and surface elas-
ticity on displacements and stresses were investigated precisely
for the normal and tangential forces to the surface, and the dis-
placements and stresses frequently vary inversely with the varia-
tion in the values of surface stress and surface elasticity. The

displacement fields obtained from the Green function for a con-
centrated force and MD were compared, and the derived Green
function was shown to express the characteristics of displacement
fields in MD calculation.
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Fig. 11 Comparison of the displacement in MD and the sur-
face Green function considering surface stresses and surface
elasticity. „The solid line is the displacement at z=−0.05 nm.…
„a… Displacement ux; „b… displacement uz.
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Mode III Fracture in Functionally
Graded Materials—Part II: Crack
Parallel to the Material Gradation
A Mode-III crack problem in a functionally graded material modeled by anisotropic
strain-gradient elasticity theory is solved by the integral equation method. The gradient
elasticity theory has two material characteristic lengths � and ��, which are responsible
for volumetric and surface strain-gradient terms, respectively. The governing differential
equation of the problem is derived assuming that the shear modulus G is a function of x,
i.e., G�G�x��G0e�x, where G0 and � are material constants. A hypersingular integro-
differential equation is derived and discretized by means of the collocation method and a
Chebyshev polynomial expansion. Numerical results are given in terms of the crack
opening displacements, strains, and stresses with various combinations of the parameters
�, ��, and �. Formulas for the stress intensity factors, KIII, are derived and numerical
results are provided. �DOI: 10.1115/1.2912933�

1 Introduction
This work is a continuation of the paper on “Gradient Elasticity

Theory for Mode III Fracture in Functionally Graded Materials—
Part I: Crack Perpendicular to the Material Gradation” by Paulino
et al. �1� �hereinafter referred to as Part I�. In Part I, the authors
considered a plane elasticity problem in which the medium con-
tains a finite crack on the y=0 plane and the material gradation is
perpendicular to the crack. In “Part II,” the material gradation is
parallel to the crack �see Fig. 1�. In Part I, the shear modulus G
�that rules the material gradation� is a function of y only, G
�G�y�=G0e�y; while in Part II, it is a function of x, i.e., G
�G�x�=G0e�x. An immediate consequence of the difference in
geometry, which is indicated in Fig. 1, is that the location of the
crack in Part I is rather irrelevant to the problem and thus can be
shifted so that the center is at the origin point �0, 0�. On the other
hand, if the material gradation is parallel to the crack, then the
location of the crack is pertinent to the solution of the problem.

The method of solution is essentially the same in both Parts I
and II, i.e., the integral equation method. However, because of
differences in the geometrical configurations, some changes are
expected. For instance, in Part I, the crack opening displacement
profile is symmetric with respect to the y-axis, while in Part II, the
symmetry of the crack profiles no longer exists. Thus, some inter-
esting questions arise.

• How are the crack opening displacement profiles affected by
the gradient elasticity and the gradation of the material?

• How are the stresses influenced under the gradient elastic-
ity?

• How are the stress intensity factors �SIFs� calculated?
• How do the results compare to the classical linear elastic

fracture mechanics �LEFM�?

We will address all the above questions. The remainder of the
paper is organized as follows. First, the constitutive equations of
anisotropic gradient elasticity for nonhomogeneous materials sub-
jected to antiplane shear deformation are given. Then, the govern-

ing partial differential equations �PDEs� are derived, and the Fou-
rier transform method is introduced and applied to convert the
governing PDE into an ordinary differential equation �ODE�. Af-
terward, the crack boundary value problem is described, and a
specific complete set of boundary conditions is given. The gov-
erning hypersingular integrodifferential equation is derived and
discretized using the collocation method. Next, various relevant
aspects of the numerical discretization are described in detail.
Subsequently, numerical results are given, conclusions are in-
ferred, and potential extensions of this work are discussed. One
appendix, providing the hierarchy of the PDEs and the corre-
sponding integral equations, supplements the paper.

2 Constitutive Equations of Gradient Elasticity
A schematic demonstration of continuously graded microstruc-

ture in functionally graded materials �FGMs� is illustrated by Fig.
2. The linkage between gradient elasticity and graded materials
within the framework of fracture mechanics and its related work
has been addressed in Part I. For the sake of completeness, the
notation and constitutive equations of gradient elasticity for an
antiplane shear crack in a FGM are briefly given in this section
and particularized to the case of an exponentially graded material
along the x-direction.

For an antiplane shear problem, the relevant displacement com-
ponents are as follows:

u = v = 0, w = w�x,y� �1�

and the nontrivial strains are as follows:

�xz =
1

2

�w

�x
, �yz =

1

2

�w

�y
�2�

The constitutive equations of gradient elasticity for FGMs are
�1,2� as follows:

�ij = ��x��kk�ij + 2G�x���ij − �2�2�ij� − �2��k��x����k�ll��ij

− 2�2��kG�x����k�ij� �3�

�ij = ��x��kk�ij + 2G�x��ij + 2���k��ij�kG�x� + G�x��k�ij� �4�
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�kij = 2���kG�x��ij + 2�2G�x��k�ij �5�

where � is the characteristic length of the material responsible for
volumetric strain-gradient terms, �� is responsible for surface
strain-gradient terms, �ij is the stress tensor, and �ijk is the
couple-stress tensor. The Lamé moduli ����x� and G�G�x� are
assumed to be functions of x. Moreover, �k=� /�xk. The parameter
�� is associated with surfaces and �k, �k�k=0, is a director field
equal to the unit outer normal nk on the boundaries.

For a Mode-III problem, the constitutive equations above be-
come

	xx = 	yy = 	zz = 0, 	xy = 0

	xz = 2G�x���xz − �2�2�xz� − 2�2��xG�x����x�xz� � 0

	yz = 2G�x���yz − �2�2�yz� − 2�2��xG�x����x�yz� � 0


xxz = 2G�x��2��xz/�x


xyz = 2G�x��2��yz/�x


yxz = 2G�x���2��xz/�y − ���xz�


yyz = 2G�x���2��yz/�y − ���yz� �6�

If G is constant, i.e., the material is homogeneous, then the con-
stitutive equations �3,4� are1 as follows:

	xx = 	yy = 	zz = 0, 	xy = 0

	xz = 2G��xz − �2�2�xz� � 0

	yz = 2G��yz − �2�2�yz� � 0


xxz = 2G�2��xz/�x


xyz = 2G�2��yz/�x


yxz = 2G��2��xz/�y − ���xz�


yyz = 2G��2��yz/�y − ���yz� �7�

It is worth to point out that each of the total stresses 	xz and 	yz in
Eq. �6� has an extra term than the ones in �7� due to the material
gradation interplay with the strain-gradient effect �2�.

3 Governing Partial Differential Equation and Bound-
ary Conditions

By imposing the only nontrivial equilibrium equation

�	xz

�x
+

�	yz

�y
= 0 �8�

the following PDE is obtained:

�

�x
�G�x�� �w

�x
− �2�2�w

�x
�	 +

�

�y
�G�x�� �w

�y
− �2�2�w

�y
�	

− �2� �2G�x�
�x2

�2w

�x2 +
�G�x�

�x

�3w

�x3 +
�G�x�

�x

�3w

�x�y2	 = 0 �9�

If the shear modulus G is assumed as an exponential function of x
�see Fig. 3�,

G = G�x� = G0e�x �10�
then PDE �9� can be simplified as

− �2�4w − 2��2�2�w

�x
+ �2w − �2�2�2w

�x2 + �
�w

�x
= 0 �11�

or

1According to the geometry of the problem �see Fig. 3�, it is the upper half-plane
that is considered in the formulation. The crack is sitting on the x-axis, which is on
the boundary of the upper half-plane. Thus, the outward unit normal should be
�0,−1,0�, and not �0, 1, 0�. Based on Eq. �5�, or the last equation in Eq. �5� of Ref.
�4�, the sign in front of �� in the expression for both 
yxz and 
yyz should be “�”
instead of “�.”
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Material gradation perpendicular to the crack.
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Material gradation parallel to the crack.

Fig. 1 A geometric comparison of the material gradation with
respect to the crack location
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Fig. 2 A schematic illustration of a continuously graded mi-
crostructure in FGMs
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Fig. 3 Geometry of the crack problem and material gradation
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�1 − ��2 �

�x
− �2�2���2 + �

�

�x
�w = 0 �12�

which is the governing PDE solved in the present paper.
It may be seen, from a viewpoint of perturbation, that PDE �12�

can be expressed in an operator form, i.e.,

H�L�w = 0, H� = 1 − ��2 �

�x
− �2�2, L� = �2 + �

�

�x
�13�

where H� is the perturbed Helmholtz operator, L� is the perturbed
Laplacian operator, and the two operators commute �H�L�

=L�H��. By sending �→0, we get the PDE �4,5�

�1 − �2�2��2w = 0 or HLw = 0 �14�

where the Helmholtz operator H=1−�2�2 and the Laplacian op-
erator L=�2 are invariant under any change of variables by rota-
tions and translations. FGM creates the perturbation and ruins the
invariance. However, the perturbing term “−��2�� /�x�” in L�,
which is not purely caused by the gradation of the material, in-
volves both the gradation parameter � and the characteristic
length � �the product of � and �2�. It can be interpreted as a
consequence of the interaction of the material gradation and the
strain-gradient effect �2�.

If we let �→0 alone, then the perturbed Helmholtz differential
operator H� will become the identity operator, and one reduces
PDE �12� to

��2 + �
�

�x
�w = 0 �15�

the perturbed Laplace equation, which is the PDE that governs the
Mode-III crack problem for nonhomogeneous materials with
shear modulus G�x�=G0e�x �6,7�. The limit of sending �→0 will
lower the fourth order PDE �11� to a second order one �Eq. �15��,
and a singular perturbation is expected. By taking both limits �
→0 and �→0, one obtains the harmonic equation for classical
elasticity. Various combinations of parameters � and � with the
corresponding governing PDE are listed in Table 1.

One may notice that in the governing PDE �12�, there is no
surface term parameter �� involved. However, �� does influence
the solution through the boundary conditions. By the principle of
virtual work, the following boundary conditions can be derived
and are adopted in this paper:

	yz�x,0� = p�x�, x � �c,d�

w�x,0� = 0, x � �c,d�


yyz�x,0� = 0, −  � x � +  �16�
The first two boundary conditions in Eq. �16� are from classical
LEFM, and the last one, involving the couple-stress 
yyz, is
needed for the higher order theory. This set of boundary condi-

tions is the same as those adopted by Vardoulakis et al. �4� An
alternative treatment of boundary conditions can be found in Ref.
�9�.

4 Fourier Transform
Let the Fourier transform be defined by

F�w���� = W��� =
1


2�
�

−



w�x�eix�dx �17�

Then, by the Fourier integral formula �10�,

F−1�W��x� = w�x� =
1


2�
�

−



W���e−ix�d� �18�

where F−1 denotes the inverse Fourier transform. Now, let us
assume that

w�x,y� =
1


2�
�

−



W��,y�e−ix�d� �19�

where w�x ,y� is the inverse Fourier transform of the function
W�� ,y�. By considering each term in Eq. �11� and using Eq. �19�,
one obtains

− �2�4w =
− �2


2�
�

−

 ��4W��,y� − 2�2�2W

�y2 +
�4W

�y4 �e−ix�d�

�20�

− ��2�2�w

�x
=

− ��2


2�
�

−

 �i�3W��,y� − i�
�2W

�y2 �e−ix�d� �21�

�2w =
1


2�
�

−

 �− �2W��,y� +
�2W

�y2 �e−ix�d� �22�

− �2�2�2w�x,y�
�x2 =

�2�2


2�
�

−



�2W��,y�e−ix�d� �23�

�
�w�x,y�

�x
=

�


2�
�

−



�− i��W��,y�e−ix�d� �24�

Equations �20�–�24� are added according to Eq. �11�, and after
simplification, the governing ODE is obtained:

��2 d4

dy4 − �2�2�2 + 2i��2� + 1�
d2

dy2

+ ��2�4 + 2i��2�3 − �2�2�2 + �2 + i���	W = 0 �25�

5 Solutions of the ODE
The corresponding characteristic equation to the ODE �25� is

�2�4 − �2�2�2 + 2i��2� + 1��2

+ ��2�4 + 2i��2�3 − �2�2�2 + �2 + i��� = 0 �26�
which can be further factorized as

��2�2 − �1 + i��2� + �2�2����2 − �2 − i��� = 0 �27�

Clearly, the four roots �i �i=1,2 ,3 ,4� of the polynomial �27�
above can be written as

�1 =
− 1

2



�4 + �2�2 + �2 −
i


2

��



�4 + �2�2 + �2
�28�

Table 1 Governing PDEs in antiplane shear problems

Cases Governing PDE References

�=0,�=0 Laplace equation:
�2w=0

Standard textbooks

�=0,��0 Perturbed Laplace equation:
��2+�� /�x�w=0

Erdogan �7�

��0,�=0 Helmholtz–Laplace equation:
�1−�2�2��2w=0

Vardoulakis et al. �4�
Fannjiang et al. �5�
Zhang et al. �8�

��0,��0 Equation �11�:

�1 − ��2 �

�x
− �2�2���2 + �

�

�x
�w = 0

Studied in this paper
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�2 =
1

2



�4 + �2�2 + �2 +
i


2

��



�4 + �2�2 + �2
�29�

�3 =
− 1

2



��2 + 1/�2�2 + �2�2 + �2 + 1/�2

−
i


2

��



��2 + 1/�2�2 + �2�2 + �2 + 1/�2
�30�

�4 =
1

2



��2 + 1/�2�2 + �2�2 + �2 + 1/�2

+
i


2

��



��2 + 1/�2�2 + �2�2 + �2 + 1/�2
�31�

If �→0, then the imaginary part of each root �i �i=1, . . . ,4�
disappears. Thus, we have exactly the same roots found by Vard-
oulakis et al. �4� and Fannjiang et al. �5�. The root �1 corresponds
to the solution of the perturbed harmonic equation �2w
+��w /�x=0, and the root �3 agrees with the solution of the per-
turbed Helmholtz equation �1−��2� /�x−�2�2�w=0. Various
choices of parameters � and � with their corresponding mechanics
theories and materials are listed in Table 2. In contrast to the four
real roots found in Part I, the four roots here are all complex and
admit a more complicated expression.

By the symmetry of the geometry, one can only consider the
upper half-plane �y�0�. By taking account of the far-field bound-
ary condition

w�x,y� → 0 as 
x2 + y2 → +  �32�

one can express the solution for W�� ,y� as

W��,y� = A���e�1y + B���e�3y �33�

where the nonpositive real part of �1 and �3 has been chosen to
satisfy the far-field condition in the upper half-plane. Accordingly,
the displacement w�x ,y� takes the form

w�x,y� =
1


2�
�

−



�A���e�1y + B���e�3y�e−ix�d� �34�

Both A��� and B��� are determined by the boundary conditions.

6 Hypersingular Integrodifferential Equation Ap-
proach

By substituting Eq. �34� into Eq. �6�, we have

	yz�x,y� = 2G�x���yz − �2�2�yz� − 2�2��xG�x���x�yz

=
G�x�

2�

�
−



��1A���e�1y�e−ix�d�, y � 0 �35�

and


yyz�x,y� = 2G�x���2��yz

�y
− ���yz�

=
G�x�

2�

�
−



���2�1
2 − ���1�A���e�1y

+ ��2�3
2 − ���3�B���e�3ye−ix�d�, y � 0 �36�

From the boundary condition in Eq. �16� imposed on the couple-
stress 
yyz �i.e., 
yyz�x ,0�=0 for −�x��, one obtains the fol-
lowing relationship between A��� and B���:

B��� =
���1 − �2�1

2

�2�3
2 − ���3

A��� = ���,��A��� �37�

with

���,�� =
���1 − �2�1

2

�2�3
2 − ���3

= −
�2�2 + i��2� + ��
�2 + i��

��
�2 + i�� + 1/�2 + ��2�2 + i��2� + 1�
�38�

Denote

��x� =
�

�x
w�x,0+� =

1

2�

�
−



�− i���A��� + B����e−ix�d�

= F−1��− i���A��� + B���� �39�

The second boundary condition in Eqs. �16� and �39� implies that

��x� = 0, x � �c,d� �40�

and

�
c

d

��x�dx = 0 �41�

which is the single-valuedness condition. By Eqs. �39� and �40�,
we obtain

�− i���A��� + B���� =
1


2�
�

−



��x�eix�dx =
1


2�
�

c

d

��t�ei�tdt

�42�

By substituting Eq. �37� into Eq. �42� above, one gets

A��� =
1


2�
� 1

�− i���1 + ���,���	�
c

d

��t�ei�tdt �43�

where

1

1 + ���,��
=

��2�2 + i��2� + 1� + ��
�2 + i�� + 1/�2

1 + ��
�2 + i�� + 1/�2 − ��
�2 + i��
�44�

By replacing the A��� in Eq. �35� by Eq. �43�, one obtains the
following integral equation in the limit y→0+:

Table 2 Roots �i together with the corresponding mechanics theory and type of material

Cases
Number
of roots Roots

Mechanics theory
and type of material References

�=0,�=0 2 ���� Classical LEFM,
homogeneous materials

Standard textbooks

�=0,��0 2 �1 and �2 in Eqs.
�28� and �29�, respectively

Classical LEFM,
nonhomogeneous materials

Erdogan �7�

��0,�=0 4 ��� � , �
�2+1 /�2 Gradient theories,
homogeneous materials

Vardoulakis et al. �4�
Fannjiang et al. �5�

��0,��0 4 The four roots �1–�4
in Eqs. �28�–�31�

Gradient theories,
nonhomogeneous materials

Studied in this paper
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lim
y→0+

	yz�x,y� = lim
y→0+

G�x�
2�

�
−



�1��,��

�� 1

�− i���1 + ���,����
c

d

��t�ei�tdt	e�1ye−ix�d�

= lim
y→0+

G�x�
2�

�
c

d

��t��
−

 � �1��,��
�− i���1 + ���,���

e�1y	
�ei�t−x��d�dt �45�

= lim
y→0+

G

2�
�

c

d

��t��
−



K��,y�ei��t−x�d�dt,

−  � x �  �46�

with

K��,y� =
�1��,��

�− i���1 + ���,���
e�1y �47�

Equation �46� is an expression for the stress 	yz�x ,y� in the limit
form of y→0+, which is valid for x� �− ,�. Note that for the
�first� boundary condition in Eq. �16�, 	yz�x ,0�= p�x�, x is re-
stricted to the crack surface �c ,d�. It is this boundary condition
that leads to the governing hypersingular integrodifferential equa-
tion �see Eq. �55a� below�. However, when SIFs are calculated, x
takes values outside of �c ,d�, and the integral �46� is not singular
�see Eq. �55b� below�.

We split K�� ,y� into the singular part K�� ,y� and the nonsin-
gular part N�� ,y�:

K��,y� = K��,y� + N��,y� �48�

where K�� ,y� is the nonvanishing part of the asymptotic expan-
sion of K�� ,y� in the powers of �, as ���→. When y is set to be
0, we have

K��,0� = − i�2���� −
��

2
i� +

3��2

2
��� +

���

2

+ �� ��

2�
�2

+
3�2�2

8
− 1	 i�

���
�49�

Note that the real and the imaginary parts of K�� ,0� given in Eq.
�49� are even and odd functions of �, respectively.

In view of the following distributional convergence,

�
−



�i����e−���y�ei�t−x��d� ——→
y→0+

4

�t − x�3 �50�

�
−



����e−���y�ei�t−x��d� ——→
y→0+

− 2

�t − x�2 �51�

�
−



�i�e−���y�ei�t−x��d� ——→
y→0+

2����t − x� �52�

�
−

 �i
���
�

e−���y	ei�t−x��d� ——→
y→0+

− 2

t − x
�53�

�
−



�1e−���y�ei�t−x��d� ——→
y→0+

2���t − x� �54�

with ��x� being the Dirac delta function, we obtain the limit

lim
y→0+

�
c

d�
−



K��,y�ei��t−x�d���t�dt

=
G

�
�=

c

d� − 2�2

�t − x�3 −
3��2

2�t − x�2 +
1 − 3�2�2/8 − ���/�2���2

t − x

+ k�x,t����t�dt +
��

2
���x� +

���

2
��x� = p�x�, c � x � d

�55a�

=
1

�
�

c

d � − 2�2

�t − x�3 −
3��2

2�t − x�2 +
1 − 3�2�2/8 − ���/�2���2

t − x

+ k�x,t����t�dt, x � c or x � d �55b�

where �= denotes the finite-part integral �11�, and the regular ker-
nel k�x , t� is given by

k�x,t� =�
0



N��,0�ei�t−x��d� �56�

Equation �55a� is a Fredholm integral equation of the second kind
with the cubic and Cauchy singular kernels.

7 Numerical Solution
To numerically solve the unknown slope function ��t� in Eq.

�55a�, we follow the general procedure outlined in the Part I pa-
per. For the sake of clarity and completeness, each step is pre-
sented below and particularized to the problem at hand �see Figs.
1 and 2�.

7.1 Normalization. By the change of variables

t = �d − c�s/2 + �c + d�/2 and x = �d − c�r/2 + �c + d�/2 �57�

the crack surface �c ,d� can be converted into �−1,1�, and the
main integral equation �55a� can be rewritten in normalized form

1

�
�=

−1

1�− 2��/a�2

�s − r�3 −
3��/a�2�a��

2�s − r�2

+
1 − 3��/a�2�a��2/8 − ����/a�/�2�/a��2

s − r
+ K�r,s����s�ds

+
��/a

2
���r� +

�a�����/a�
2

��r� =
P�r�
G0

e−��ar+�c+d�/2�, �r� � 1

�58�
where

a = �d − c�/2 = half of the crack length �59�

��r� = ��ar + �c + d�/2�, P�r� = p�ar + �c + d�/2� �60�

K�r,s� = ak�ar + �c + d�/2, as + �c + d�/2� �61�

and k�x , t� is described by Eq. �56�.
Note that in Eq. �58�, G�x� has been written as

G�x� = G0e�x = G0e����d−c�/2�r+��c+d�/2�� = G0e�a��r�ea����d+c�/�d−c��

where a�= �d−c�� /2 and �d+c� / �d−c� are two dimensionless
quantities. Together with the terms � /a and �� /a that appear in
Eq. �58�, the following dimensionless parameters are defined:

�̃ = �/a, ��̃ = ��/a and �̃ = a� �62�
They will be used in the numerical implementation and results.

7.2 Representation of the Density Function. To proceed
with the numerical approximation, a representation of ��s� is cho-
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sen so that one can evaluate the hypersingular and the Cauchy
singular integrals by finite part and Cauchy principal value, re-
spectively �see Refs. �11,12��. For the cubic hypersingular integral
equation �58�, the solution ��s� can be represented as

��s� = g�s�
1 − s2 �63�

where g��1� is finite and g��1��0 �5�. By finding numerical
solution for g�s�, one can find the approximate solution for ��s�.
The representation �63� of ��s� is suggested by the following
asymptotic behavior of the solution around the crack tips:

Displacements � r3/2, strains � 
r, stresses � r−3/2 �64�

reported in Refs. �1,5�.

7.3 Chebyshev Polynomial Expansion. In view of Eq. �63�
and the fact that �Un�s� are orthogonal on �−1,1� with respect to
the weight function 
1−s2, g�s� can be most naturally expressed
in terms of the Chebyshev polynomials of the second kind Un�s�.
However, the orthogonality is not required in the implementation
of the numerical procedures, and either Chebyshev polynomials of
the first kind Tn�s� or of the second kind Un�s� may be employed
in the approximation, i.e.,

g�s� = �
n=0



anTn�s� or g�s� = �
n=0



AnUn�s� �65�

The coefficients an’s or An’s are numerically determined by the
collocation method. As shown by Chan et al. �6�, the two expan-
sions should lead to consistent numerical results. In this paper, the
expansion in terms of Un�s� is adopted, i.e.,

��s� = 
1 − s2�
n=0



AnUn�s� �66�

where Un�s� is defined, as usual, by

Un�s� =
sin��n + 1�cos−1�s��

sin�cos−1�s��
, n = 0,1,2, . . . �67�

Note that the single-valuedness condition �41� or, equivalently,
�−1

1 ��s�ds=0 implies

A0 = 0 �68�

Thus, the running index n in Eq. �66� can start from 1 instead of
0.

7.4 Evaluation of the Derivative of the Density Function.
The term ���r� in Eq. �58� is evaluated using the expansion �66�
and the fact that

d

dr
�Un�r�
1 − r2� = −

n + 1

1 − r2

Tn+1�r�, n � 0 �69�

Thus

���r� =
d

dr�
1 − r2�
n=0



AnUn�r�	 =
− 1


1 − r2�
n=0



�n + 1�AnTn�r�

�70�

7.5 Formation of the Linear System of Equations. The An
coefficients are determined by transforming the integral equation
�55a� into a system of linear algebraic equations in terms of the
An’s. By replacing ��s� in Eq. �58� by the representation �66�, and
using Eq. �70�, one obtains the governing integral equation in
discretized form

− 2�̃2�
n=1


An

�
�=

−1

1 Un�s�
1 − s2

�s − r�3 ds −
3�̃2�̃

2 �
n=1


An

�
�=

−1

1 Un�s�
1 − s2

�s − r�2 ds

+ �1 −
3�̃2�̃2

8
− � �̃�

2�̃
�2	�

n=1


An

�
�–

−1

1 Un�s�
1 − s2

s − r
ds

+ �
n=1


An

�
�

−1

1


1 − s2Un�s�K�r,s�ds

−
�̃�

2
1 − r2�
n=1



�n + 1�AnTn+1�r� +
�̃��̃

2

1 − r2�

n=1



AnUn�r�

=
P�r�
G�r�

, �r� � 1 �71�

We have used the running index n that starts from 1 �see Eq. �68��.

7.6 Evaluation of Singular and Hypersingular Integrals.
Formulas for evaluating singular integral terms in Eq. �71� are
listed below:

1

�
�–

−1

1 Un�s�
1 − s2

s − r
ds = − Tn+1�r�, �r� � 1, n � Z+ �72�

1

�
�=

−1

1 Un�s�
1 − s2

�s − r�2 ds = − �n + 1�Un�r�, �r� � 1, n � Z+

�73�

1

�
�=

−1

1 Un�s�
1 − s2

�s − r�3 ds

= � − 1, n = 0

�n2 + n�Un+1�r� − �n2 + 3n + 2�Un−1�r�
4�1 − r2�

, n � 1 � �r� � 1

�74�

The details of the calculation can be found in Ref. �13�.

7.7 Evaluation of Nonsingular Integral. By combining all
the results obtained so far in the numerical approximation, one
may rewrite Eq. �71� in the following form:

− �̃2

2�1 − r2��n=1



An��n2 + n�Un+1�r� − �n2 + 3n + 2�Un−1�r��

+
3�̃�̃2

2 �
n=1



�n + 1�AnUn�r� − �1 −
3�̃2�̃2

8
− � �̃�

2�̃
�2	

��
n=1



AnTn+1�r� + �
n=1


An

�
�

−1

1


1 − s2Un�s�K�r,s�ds

−
�̃�

2
1 − r2�
n=1



�n + 1�AnTn+1�r� +
�̃��̃

2

1 − r2�

n=1



AnUn�r�

=
P�r�
G�r�

, �r� � 1 �75�

The regular kernel in Eq. �75� is actually a double integral, i.e.,

061015-6 / Vol. 75, NOVEMBER 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�
−1

1


1 − s2Un�s�K�r,s�ds =�
−1

1


1 − s2Un�s�ak�ar,as�ds

=�
−1

1


1 − s2Un�s�

��
0



aN��,0�sin�a��s − r��d�ds

�76�

The Fourier sine transform in Eq. �76� can be efficiently evaluated
by applying fast Fourier transform �FFT� �14�. The integral along
�−1,1� can be readily obtained by the Gaussian quadrature
method �15�.

8 Stress Intensity Factors
In classical LEFM, the SIFs are defined by

KIII
C �d� = lim

x→d+


2��x − d�	yz�x,0� �x � d� �77�

and

KIII
C �c� = lim

x→c−


2��c − x�	yz�x,0� �x � c� �78�

After normalization, the crack surfaces are located in the interval
�−1,1�. The density function ��t� is expanded in terms of Cheby-
shev polynomials of the second kind Un, which, when substituted
into Eq. �55b�, give rise to the following formulas for �r��1 �see
Ref. �13��:

1

�
�

−1

1
Un�s�
1 − s2

s − r
ds = − �r −

�r�
r


r2 − 1�n+1

, n � 0 �79�

1

�
�

−1

1
Un�s�
1 − s2

�s − r�2 ds = − �n + 1��1 −
�r�


r2 − 1
�

��r −
�r�
r


r2 − 1�n

, n � 0 �80�

1

�
�

−1

1
Un�s�
1 − s2

�s − r�3 ds

=
− 1

2
�n + 1��r −

�r�
r


r2 − 1�n−1

��n�1 −
�r�


r2 − 1
�2

+

r −
�r�
r


r2 − 1

�
r2 − 1�3 �, n � 0 �81�

The highest singularity in Eqs. �79�–�81� appears in the last
term in Eq. �81� and it behaves like �r2−1�−3/2 as r→1+ or r→
−1−. Motivated by such asymptotic behavior, we define the SIFs
for strain-gradient elasticity as

�KIII�d� = lim
x→d+

2
2��x − d��x − d�	yz�x,0� �x � d� �82�

�KIII�c� = lim
x→c−

2
2��c − x��c − x�	yz�x,0� �x � c� �83�

Thus,

�KIII�d� = lim
x→d+

2
2��x − d��x − d�	yz�x,0� �x � d�

= lim
r→1+

2
2���d − c

2
�r +

c + d

2
− d	�ar − a�

�	yz�d − c

2
r +

c + d

2
,0� �r � 1�

= 2a
2�a lim
r→1+


�r − 1��r − 1�	yz��d − c�r/2

+ �c + d�/2,0� �r � 1�

= 2a
2�a lim
r→1+


�r − 1��r − 1�G0ea�re��d+c�/2

��− 2�2

�a2 ��
−1

1
��s�

�s − r�3ds �r � 1� �84�

By using Eq. �66� in conjunction with Eq. �81�, we obtain from
Eq. �84�

KIII�d� = 2
2�a�− 2�

a
�G0e�d lim

r→1+
�r − 1�3/2

��
n=0

N
− �n + 1�

2
�r −

�r�
r


r2 − 1�n−1

��n�1 −
�r�


r2 − 1
�2

+

r −
�r�
r


r2 − 1


r2 − 13 �An

= 
�aG0e�d��/a��
n=0



�n + 1�An �85�

Similarly,

KIII�c� = 
�aG0e�c��/a��
n=0



�− 1�n�n + 1�An �86�

9 Results and Discussion
The numerical results include crack surface displacements,

strains, stresses, and SIFs.

9.1 Crack Surface Displacements. The �normalized� crack
surface displacements shown in Figs. 4–8 are obtained by inte-
grating the slope function �see Eq. �87� below�. Figure 4 shows a
full normalized crack sliding displacement profile for a homoge-

neous medium ��̃=0� with the strain-gradient effect. The crack
profile in Fig. 4 is symmetric because the material is homoge-
neous. Figures 5 and 6 are for classical LEFM. Figures 7 and 8 are
for the strain-gradient theory. As ��0, the material has larger
shear modulus at the left side of the crack than at the right side,
and thus the material is stiffer on the left and more compliant on
the right, as shown in Figs. 5 and 7. Similarly, Figs. 6 and 8
illustrate the case of ��0 and confirm that the material is stiffer
on the right and more compliant on the left. The variation of the
shear modulus destroys the symmetry of the displacement pro-
files. The most prominent feature is the cusping phenomena
around the crack tips, as shown in Figs. 4, 7, and 8. The difference
between Figs. 5 and 6 and Figs. 7 and 8 is the cusp at the crack
tips. In Figs. 5 and 6, one may observe that the profiles have a
tangent line with infinite slope at the crack tips, which is a com-
mon crack behavior exhibited in the classical LEFM. However,
such is not the case in gradient theory as evidenced by the nu-
merical results shown.
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9.2 Strains. We have used the strain-like field, ��x� �the slope
function�, as the unknown density function in our integral equa-

tion formulation. The normalized version, ��x�, with various �̃ is
plotted in Fig. 9. Note that ���1�=0 while in classical LEFM,
���1�= �. The vanishing slope is equivalent to the cusping at
the crack tips. The �normalized� crack displacement profile w�r ,0�
can be obtained by

w�r,0� =�
−1

r

��s�ds =�
−1

r


1 − s2�
n=0

N

AnUn�s�ds �87�

As � decreases, ��x� seems to converge to the slope function of
the classical LEFM case in the region away from the crack tips,
where ��x� is very different from its classical counterpart near the
crack tips.

9.3 Stresses. Similar to classical LEFM, the stress 	yz�x ,0�
diverges as x approaches the crack tips along the ligament �Fig.

10�. Moreover, the sign of the stress changes, and as � decreases,
the interior part �i.e., the region apart from the two crack tips� of
	yz�x ,0� seems to converge to the solution of classical LEFM.
The finding of the negative near-tip stress is consistent with the
results by Zhang et al. �8� who also investigated a Mode-III crack
in elastic materials with strain-gradient effects; this negative stress
may be considered as a necessity for the crack surface to reattach
near the tips. The point worth noting here is that not all strain-
gradient theories possess the negative-stress feature near the crack
tips. For instance, the strain-gradient elasticity theory for cellular
materials �16� and elastic-plastic materials with strain-gradient ef-
fects �17�, which fall within the classical couple-stress theory
framework, shows a positive-stress singularity near the crack tip.
On the other hand, the strain-gradient theory proposed by Fleck
and Hutchinson �18�, which does not fall into the above frame-
work, predicts a compressive stress near the tip of a tensile
Mode-I crack �19,20�.
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9.4 Stress Intensity Factors. Besides using ��x� as the un-
known density function, one may also use displacement w�x� to be
the unknown in the formulation of the integral equation �see Ap-
pendix�. By rewriting KIII

C in terms of the coefficients in the ex-
pansion for w, one obtains �see Ref. �6�� the following.

• With Tn expansion,

KIII
C �c�

G0

��d − c�/2

= e�c�
0

N

�− 1�nan �88�

KIII
C �d�

G0

��d − c�/2

= e�d�
0

N

an

• With Un expansion,

KIII�c�

G0

��d − c�/2

= e�c�
0

N

�− 1�n�n + 1�An �89�

KIII�d�

G0

��d − c�/2

= e�d�
0

N

�n + 1�An

Table 3 contains the �normalized� SIFs for the case of classical
LEFM by using both Tn and Un expansions �see Eqs. �63� and
�65��. The SIFs in Table 3 have been obtained by using Eqs. �88�
and �89�, and they are close to the results reported by Erdogan �7�.

Table 4 contains the SIFs for strain-gradient elasticity at �̃

=0.1 and �̃�=0.01. One observes that the dependence of KIII�c�
and KIII�d� is similar to the classical case reported in Table 3.

10 Concluding Remarks
This paper has shown that the integral equation method is an

effective means of formulating crack problems for a FGM consid-
ering strain-gradient effects. The theoretical framework and nu-
merical analysis has been utilized to solve antiplane shear crack
problems in FGMs by using Casal’s continuum. The behavior of
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„normalized… �̃=0.10 and �̃�=0.01. Here, a= „d−c… /2 denotes the
half crack length.
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Table 3 Normalized SIFs for Mode-III crack problem in a FGM
„�=��\0…

��d−c

2 �
Un representation Tn representation

KIII�c�

p0
��d−c� /2

KIII�d�

p0
��d−c� /2

KIII�c�

p0
��d−c� /2

KIII�d�

p0
��d−c� /2

−2.00 1.21779 0.55672 1.21779 0.55672
−1.50 1.17801 0.63007 1.17801 0.63007
−1.00 1.14307 0.72845 1.14307 0.72845
−0.50 1.09036 0.85676 1.09036 0.85676
−0.10 1.02289 0.97312 1.02289 0.97312

0.00 1.00000 1.00000 1.00000 1.00000
0.10 0.97312 1.02289 0.97312 1.02289
0.50 0.85676 1.09036 0.85676 1.09036
1.00 0.72845 1.14307 0.72845 1.14307
1.50 0.63007 1.17801 0.63007 1.17801
2.00 0.55672 1.21779 0.55672 1.21779
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the solution around the crack tips is affected by the strain-gradient
theory, and not by the gradation of the materials. Also, the integral
equation formulation has been found to be an adequate tool for
implementing the numerical procedures and to assess physical
quantities such as crack surface displacements, strains, stresses,
and SIFs. Further experiments are needed for justifying the physi-
cal aspects of the method. Future work includes extension of the
theory to Mode-I crack problems.
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Appendix: Hierarchy of Governing Integral Equations
In this appendix, we list the type of the physical problem under

antiplane shear loading, its governing PDE, and integral equation
associated with the choice of the density function. The corre-
sponding references in the literature are also provided.

1. Classical LEFM, Homogeneous Materials �G�G0�

• PDE: Laplace equation �2w�x ,y�=0.
• Integral equation with the density function ��x�

=�w�x ,0� /�x:

G0

�
�–

c

d
��t�
t − x

dt = p�x�, c � x � d �A1�

• Integral equation with the density function ��x�
=w�x ,0�:

G0

�
�=

c

d
��t�

�t − x�2dt = p�x�, c � x � d �A2�

Many standard textbooks have covered the Laplace equation �see,
for example, Ref. �21��.

2. Classical LEFM, Nonhomogeneous Materials �G�G�y�
=G0e�y�

• PDE: Perturbed Laplace equation ��2+��� /�y��w�x ,y�
=0.

• Integral equation with the density function ��x�
=�w�x ,0� /�x:

G0

�
�–

−a

a� 1

t − x
+ K̃��x,t�	��t�dt = p�x�, − a � x � a

�A3�

Erdogan and Ozturk �22� have investigated this problem as
bonded nonhomogeneous materials with an interface cut.

3. Classical LEFM, Nonhomogeneous Materials �G�G�x�
=G0e�x�

• PDE: Perturbed Laplace equation ��2+��� /�x��w�x ,y�
=0.

• Integral equation with the density function ��x�
=�w�x ,0� /�x:

G�x�
�
�–

c

d� 1

t − x
+

�

2
log�t − x� + Ñ�x,t�	��t�dt

= p�x�, c � x � d �A4�
• Integral equation with the density function ��x�

=w�x ,0�:

G�x�
�
�=

c

d� 1

�t − x�2 +
�

2�t − x�
+ N�x,t�	��t�dt

= p�x�, c � x � d �A5�

The regular kernels Ñ�x , t� in Eq. �A4� and N�x , t� in Eq. �A5� can
be found in Ref. �6�. Erdogan �7� has studied this problem for
bonded nonhomogeneous materials.

4. Gradient Elasticity, Homogeneous Materials �G�G0�

• PDE: Helmholtz–Laplace equation �1−�2�2��2w�x ,y�
=0.

• Integral equation with the density function ��x�
=�w�x ,0� /�x:

1

�
�=

c

d� − 2�2

�t − x�3 +
1 − ���/��2/4

t − x
+ K0�t − x����t�dt

+
��

2
���x� =

p�x�
G0

�A6�

Fannjiang et al. �5� have studied Eq. �A6� in detail.
5. Gradient Elasticity, Nonhomogeneous Materials �G�G�y�

=G0e�y�

• PDE: �1−��2�� /�y�−�2�2���2+��� /�y��w�x ,y�=0.
• Integral equation with the density function ��x�

=�w�x ,0� /�x:

Table 4 Normalized generalized SIFs for a Mode-III crack at �̃

=0.1, �̃=0.01, and various values of �̃

�̃
KIII�c�

p0
��d−c� /2

KIII�d�

p0
��d−c� /2

−2.00 1.23969 0.49938
−1.00 1.12585 0.67600
−0.50 1.04849 0.80248
−0.10 0.96814 0.91658

0.00 0.94385 0.94385
0.10 0.91677 0.96828
0.50 0.80277 1.04854
1.00 0.67637 1.12584
2.00 0.49938 1.23969
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G0

�
�=

−a

a� − 2�2

�t − x�3 +
5�2�2/8 + ���/4 + 1 − ���/��2/4

t − x

+ k��x,t����t�dt + G���/2 + �2�����x�

= p�x�, �x� � a �A7�

This is the Part I paper by Paulino et al. �1�.
6. Gradient Elasticity, Nonhomogeneous Materials �G�G�x�

=G0e�x�

• PDE: �1−��2�� /�x�−�2�2���2+��� /�x��w�x ,y�=0.
• Integral equation with the density function ��x�

=�w�x ,0� /�x:

1

�
�=

c

d� − 2�2

�t − x�3 −
3��2

2�t − x�2 +
1 − 3�2�2/8 − ���/�2���2

t − x

+ k�x,t����t�dt +
��

2
���x� +

���

2
��x�

= p�x�/G, c � x � d

This is the main governing integral equation �55a�.
• Integral equation with the density function ��x�

=w�x ,0�:

1

�
�=

c

d� − 6�2

�t − x�4 −
3�2�

�t − x�3 +

1 − � ��

2�
�2

−
3�2�2

8

�t − x�2

+

�

2
�1 − � ��

2�
�2	 +

�2�3

16

t − x
+ k̃�x,t����t�dt

+
��

2
���x� −

���

2
���x� − �1

�
� ��

2�
�3

+
��

8�2	��x�

=
p�x�
G�x�

, c � x � d
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Reliability of Strongly Nonlinear
Single Degree of Freedom
Dynamic Systems by the Path
Integration Method
This paper presents a first passage type reliability analysis of strongly nonlinear stochas-
tic single-degree-of-freedom systems. Specifically, the systems considered are a dry fric-
tion system, a stiffness controlled system, an inertia controlled system, and a swing. These
systems appear as a result of implementation of the quasioptimal bounded in magnitude
control law. The path integration method is used to obtain the reliability function and the
first passage time. �DOI: 10.1115/1.2967896�

Keywords: probability density function, path integration, strongly nonlinear systems,
control, swings, random vibrations, outcrossing rate, reliability

1 Introduction
Reliability and safety are the major concerns in designing and

developing modern mechanical systems. A system’s reliability
may be considered as the probability that no system failure occurs
within a given time interval. Often the reliability problem is asso-
ciated with finding the probability that a system’s response stays
within a prescribed domain, an outcrossing of which leads to im-
mediate failure. A problem of this type is called the first passage
problem �1–3�, and it has been extensively studied by a number of
authors. The first passage problem is directly related to a solution
of the corresponding Pontryagin equation, written with respect to
the first excursion time T. Unfortunately, an exact analytical solu-
tion to this problem, even for a linear system, is yet to be found.
A few strategies have been proposed over the years to deal with
this type of problems. One of them is based on an averaging
procedure and further problem reformulation for the system’s re-
sponse amplitude or energy. The Markov property of the energy
envelope has been used to evaluate the probability of the first
passage time for a linear system �4�, systems with nonlinear stiff-
ness �5�, or nonlinear damping �6�.

A number of problems have been solved numerically and ana-
lytically since then. A numerical solution to the Pontryagin equa-
tion has been developed in Refs. �7–9�, whereas a numerical so-
lution to the backward Kolmogorov–Feller equation, for a system
subjected to a Poisson driven train of impulses, has been proposed
in Ref. �10�.

New analytical and numerical approaches have been reported in
Refs. �11–13�. The method proposed in Ref. �11� can only be used
in practice for problems where the stochastic aspect can be repre-
sented by a very limited number of random variables. Hence, it
would not seem to be applicable for problems with stochastic
process inputs of the kind studied in this paper. In Ref. �12�, a
method is described for estimating the exceedance probability of
time variant systems with random parameters by using an im-
proved response surface technique. However, the accuracy of such
a method for the problems considered in this paper is hard to
assess. Recently, a new tail-equivalent linearization method has

been developed in Ref. �14�, which may be used for reliability
estimates for single as well as multiple-degree-of-freedom
�MDOF� systems for stationary inputs.

Special attention should be paid to the reliability of systems,
which appears as a result of some design or optimization proce-
dures. Indeed, the purpose of these procedures is to satisfy certain
criteria, often not related to the system’s reliability. In fact, their
implementation may lead to a deterioration of the system’s reli-
ability. For instance, consider a stochastic optimal control prob-
lem, which aims to reduce the mean response energy of a single-
degree-of-freedom �SDOF� undamped linear oscillator, subjected
to a zero-mean external Gaussian white noise, by means of a
bounded in magnitude control force. It has been demonstrated in
Ref. �15� that an optimal control law for a steady-state response is
represented by a dry friction law. On the other hand, it has been
shown by asymptotic analysis in Ref. �16� that a stochastic system
with dry friction is less reliable than that of a system with linear
damping. Therefore, a reliability investigation of controlled sto-
chastic systems may be of special importance.

This paper is devoted to a reliability investigation of four types
of controlled systems by application of the numerical path inte-
gration �PI� method �17�. The PI code is validated by comparing
some results to the results of the Monte Carlo simulations as well
as results obtained for an equivalent linear system. The latter
makes sense only for “weak” nonlinearities, i.e., for small values
of the control parameter r �r�1�. First, a system with dry friction
is studied; its asymptotic analysis has been made in Ref. �16� with
respect to the system’s energy. The other three SDOF systems
under consideration are systems with parametric control of their
parameters. They appear as a result of application of bounded in
magnitude control forces, applied consequently to the system’s
stiffness, inertia, or by varying a pendulum’s length �swings�
�18–20�. Although the idea of controlling a system’s response by
changing its parameters is far from being new �see examples in
Ref. �21��, the proposed strategy leads to control forces of the
signum type. It makes these systems strongly nonlinear and their
analysis highly complicated, especially for large “amplitude” of
jumps at switching �values of r close to unity�. Since the available
asymptotic techniques provide reliable estimates for nonlinear
systems only in the case of small nonlinearities, it was decided to
conduct a numerical investigation, comparing some obtained re-
sults to the reliability results for an equivalent linear system. The
latter is constructed using values of an equivalent viscous damp-
ing coefficient and effective frequency. The path integration
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method has been used earlier for these systems to estimate the
stationary response probability density function �PDF� of the state
space variables �22�. Here the PI method has been adapted to
obtain the reliability characteristics of the considered systems. The
approach is based on previous work reported in Ref. �23�.

2 Problem Statement and Numerical Approach

2.1 Path Integration Approach to Reliability. The SDOF
dynamic systems to be investigated in this paper can all be written
in the following form:

Ẍ + g�X,Ẋ� = ��t� �1�

where g�· , ·� denotes a function to be specified in each particular
case, while ��t� throughout denotes a zero-mean stationary Gauss-
ian white noise process satisfying E���t���t+���=D���� for a
positive intensity parameter D. The application of the external
quasioptimal control policy leads to a dry friction law, whereas
the application of the quasioptimal control force results in para-
metrically controlled systems with a jumpwise variation of either
the system’s stiffness, moment of inertia, or both. The latter hap-
pens through a variation of the pendulum’s length and such a
system is well known as a swing.

Equation �1� will be construed as an Itô stochastic differential
equation �SDE�, that is,

dZ�t� = h�Z�t��dt + bdB�t� �2�

where the state space vector process Z�t�= �X�t� ,Y�t��T

= �X�t� , Ẋ�t��T has been introduced, h= �h1 ,h2�T with h1�Z�=Y and
h2�Z�=−g�X ,Y�, b= �0,�D�T, and B�t� denotes a standard Brown-
ian motion process. From Eq. �2� it follows immediately that Z�t�
is a Markov process, and it is precisely the Markov property that
will be used in the formulation of the PI procedure.

The reliability is defined in terms of the displacement response
process X�t� in the following manner, assuming that all events are
well defined:

R�T�x0,0,t0� = Prob�xl � X�t� � xc;t0 � t � T�X�t0� = x0,Y�t0� = 0�
�3�

where xl ,xc are the lower and upper threshold levels defining the
safe domain of operation. Hence, the reliability R�T �x0 ,0 , t0�, as
we have defined it here, is the probability that the system response
X�t� stays above the threshold xl and below the threshold xc

throughout the time interval �t0 ,T� given that it starts at time t0
from x0 with zero velocity �xl�x0�xc�. In general, it is impos-
sible to calculate the reliability exactly as it has been specified
here since it is defined by its state in continuous time, and for
most systems the reliability has to be calculated numerically,
which inevitably will introduce a discretization of the time. As-
suming that the realizations of the response process X�t� are piece-
wise differentiable with bounded slope with probability one, the
following approximation is introduced:

R�T�x0,0,t0�

	 Prob�xl � X�tj� � xc, j = 1, . . . ,n�X�t0� = x0,Y�t0� = 0�
�4�

where tj = t0+ j�t, j=1, . . . ,n, and �t= �T− t0� /n. With the as-
sumptions made, the right hand side �rhs� of this equation can be
made to approximate the reliability as closely as desired by ap-
propriately choosing �t, or equivalently n. Within the adopted
approximation, it is realized that the reliability can now be ex-
pressed in terms of the joint conditional PDF

fX�t1�¯X�tn��X�t0�,Y�t0��· , . . . , · �x0,0�

as follows, which is just a rephrasing of Eq. �4�:

R�T�x0,0,t0� 	 

xl

xc

¯

xl

xc

fX�t1�¯X�tn��X�t0�Y�t0�

��x1, . . . ,xn�x0,0�dx1 ¯ dxn �5�

Due to the Markov property of the state space vector process
Z�t�= �X�t� ,Y�t��T, we may express the joint PDF of
Z�t1� , . . . ,Z�tn� in terms of the transition probability density func-
tion

p�z,t�z�,t�� = fZ�t��Z�t���z�z�� = fZ�t�Z�t���z,z��/fZ�t���z��,

�fZ�t���z�� � 0�

in the following way:

fZ�t1�. . .Z�tn��Z�t0��z1, . . . ,zn�z0� = �
j=1

n

p�zj,tj�zj−1,tj−1� �6�

This leads to the expression �z0= �x0 ,0�T, dzj =dxjdyj, j=1, . . . ,n�.

R�T�x0,0,t0� 	 

−	

	 

xl

xc

¯

−	

	 

xl

xc

�
j=1

n

p�zj,tj�zj−1,tj−1�dz1 ¯ dzn

�7�

which is the path integration formulation of the reliability prob-
lem. The numerical calculation of the reliability is done iteratively
in an entirely analogous way as in standard path integration. To
show that, let us introduce a reliability density function �RDF�
q�z , t �z0 , t0� as follows:

q�z2,t2�z0,t0� =

−	

	 

xl

xc

p�z2,t2�z1,t1�p�z1,t1�z0,t0�dz1 �8�

and �n
2�,

q�zk,tk�z0,t0�

=

−	

	 

xl

xc

p�zk,tk�zk−1,tk−1�q�zk−1,tk−1�z0,t0�dzk−1,k = 3, . . . ,n

�9�

The reliability is then finally calculated approximately as �T= tn�.

R�T�x0,0,t0� 	 

−	

	 

xl

xc

q�zn,tn�z0,t0�dzn �10�

The complementary probability distribution of the time to fail-
ure Te, i.e., the first passage time, is given by the reliability func-
tion. The mean time to failure �Te can thus be calculated by the
equation

�Te =

0

	

R���x0,0,t0�d� �11�

To evaluate the reliability function, it is required to know the
transition probability density function p�z , t �z� , t��, which is un-
known for the considered nonlinear systems. However, from Eq.
�2�, it is seen that for a small t− t� it can be determined approxi-
mately, which is what is needed for the numerical calculation of
the reliability. A detailed discussion of this and the iterative inte-
grations of Eqs. �8� and �9� are given in Refs. �22,24�. Concerning
the integrations, there is, however, one small difference between
the present formulation and that described in these references. In
Eqs. �8� and �9�, the integration in the x-variable only extends
over the interval �xl ,xc�. The infinite upper and lower limits on the
y-variable are replaced by suitable constants determined by, e.g.,
an initial Monte Carlo simulation �MCS�.

If the system response Z�t� has a stationary response PDF fZ�z�
as t→	, it follows that the conditional response PDF
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f �Z�tn��Z�0�,xl�X�tj��xc;0�j�n−1��z� will also reach a stationary density,
say, q��z�, when tn→	, provided the system has finite memory.
This means that the reliability process eventually becomes memo-
ryless, and hence the RDF converges q�z , tn �z0 , t0�→q��z�Ke−�tn

for some constants K and � as tn→	. Also the numerical method
should reach stationarity in the conditional density. This also im-
plies that the numerically estimated reliability function must be
exponential, since the same relative amount of probability mass
leaves the system at every iteration. Hence in the end, the only
thing one should need for a good reliability estimate is the behav-
ior in the transient phase and the exponential decay thereafter.

2.2 General Comments About the Numerical Procedure.
The numerical calculations were performed for a 256�256 mesh
in the state space, with very high grid resolution around the axes
for the inertia controlled system and swing system, because the
PDFs have discontinuities along the axes and high spikes at the
discontinuity that requires a well adapted spline representation
�22�. More specifically, the grid resolution was determined by an
exponentially decaying function away from each coordinate axis.
Because of the discontinuities, there are no grid points on the axes
themselves. However, the interpolant will be globally smooth and
will assume finite values also on the axes. Hence, there is no true
discontinuity in the interpolant even if the gradients of the inter-
polant may be very large at the axes. The time step was 0.01 for
all simulations, and the noise intensity D was set to 1.0. The initial
choice of time step is determined by the characteristic time con-
stants of the dynamic system, which can be either seen from the
system equations or from a short Monte Carlo simulation of the
dynamic response of the system. As is typically done for verifying
the convergence of numerical solutions, the accuracy of the cal-
culated PI solution may be checked by changing repeatedly, if
required, the size of the time step, for example, by a factor 2.

For all simulations, the reliability was computed using the bar-
riers xc=2.5�x, xc=3.0�x, and xc=3.5�x. The lower barrier is ei-
ther xl=−	, one-sided barrier case, or xl=−xc for two-sided reli-
ability. These bounds were far enough out in the tails that
interpolation of the RDF from Eqs. �8� and �9� was no problem.

It should be mentioned that for all the systems studied in this
paper, the calculated reliability function displayed a distinctive
exponential behavior asymptotically, as one would expect. That is,
after some transient time, the reliability function could not be
distinguished from a straight line when plotted on a logarithmic
scale. In addition, the PDF for the time to failure has a right tail
that is exponential with the same exponent, which again is verified
by plotting the PDF on a logarithmic scale. The oscillatory behav-
ior of the PDFs of the time to failure, as seen on the close ups,
largely reflects the transient dynamics of the systems due to initial
conditions �see Fig. 1, for instance�.

3 Monte Carlo Simulation
To check the numerical results, MCSs have been run for a few

selected cases. The main problem is that the probability of cross-
ing a high reliability level is small, so the simulation will have to
run for a long time before this happens. Since a good approxima-
tion of the PDF for the first passage time needs a large number of
Monte Carlo simulations, this easily becomes a very time consum-
ing method. The verification of the numerical results by Monte
Carlo simulations is therefore carried out on two levels. First, the
expected first passage time is estimated directly from simulated
response time histories for the lowest level �=2.5��, where �
equals the standard deviation of stationary response. For all the
models investigated in this paper, the estimated expected first pas-
sage time obtained by MCS agreed with the corresponding one
calculated by PI within the accuracy of the MCS estimate, that is,
within a few percent.

The second method of verification was based on the observa-
tion that the reliability function and the PDF decays exponentially
after a transient time. A focus on the estimation of the rate of
decay reduces the number of required simulations considerably.
That is, the main statistic to estimate from the stochastic upcross-
ing time T is �, given the formula

P�T 
 t�T 
 ttr� = e−��t−ttr�, t 
 ttr �12�

where ttr stands for the transient time. Equation �12� is an approxi-
mation, since the transient never dies out completely. However,
the equation is asymptotically correct as ttr→	, and numerically
valid for a transient time chosen sufficiently large. An adjusted
maximum likelihood estimator �MLE� for �, which is also unbi-
ased for a fixed transient time ttr, is

�̂ =
n − 1

�i=1
n �Ti − ttr�

�13�

for n independent upcrossing times Ti that are all larger than ttr.
This means that some Monte Carlo simulations with exit time
shorter than the transient time will be discarded, but as the prob-
ability of exiting that early from a start at the origin is small, most
results will be used.

It is important to note that estimating the full PDF, and here
especially the transient behavior, is very time consuming with the
Monte Carlo methods without a parametric model. Path integra-
tion, however, calculates this directly, and if only the transient
behavior is needed, the PDF can be found with high accuracy with
a fairly short simulation.

When comparing the results for the MC and the PI methods,
remember that the strengths and weaknesses of the numerical
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Fig. 1 Probability density of time to failure for the dry friction problem with reliability level 2.5 standard
deviations and r=0.15 for the one- and two-sided cases
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methods are also very different. The main problem for the PI
method is that the PDFs have sharp discontinuities or peaks that
make the interpolation difficult.

The exponent can, however, be calculated between two time
steps from long after the transient has died out.

The MC method relies on the parametric representation of the
PDF after an estimated transient time, which is an approximation.
The point estimates of parameter from MC are here calculated
from 200 random samples and hence have a variance.

Since Ti− ttr is assumed to be exponentially distributed, �̂ / �n
−1� has an inverse gamma distribution, and the variance is

Var��̂� =
�2

�n − 2�
�14�

Hence, instead of estimating the standard deviation of the test
statistic �̂ for the MC simulation, Eq. �14� gives that it is approxi-
mately �̂ /�198=0.07�̂.

The MC simulations were performed for all four systems, and
the estimated values of � from the PI calculations were checked
against the 90% confidence intervals based on the MC results, and
they were all accepted.

4 Results for a Stochastic Dry Friction System
In this section, some derivations made in Ref. �16� for a sto-

chastic system with dry friction are recalled. It is worth mention-
ing that for the parametric systems the stochastic averaging pro-
cedure results in an exponential response PDF for response
energy, whereas the dry friction system has an exponent in power
of the square root of the response energy. Therefore, for the para-
metrically controlled systems, the case of small nonlinearity can-
not be caught by the averaging procedure and needs to be inves-
tigated numerically. For the system with dry friction, it is possible
to use an approximate analysis for a small value of the dry friction
coefficient. Early results on the use of PI for an oscillator with dry
friction are reported in Ref. �25�.

Consider the following nonlinear system, subjected to the zero-
mean, stationary Gaussian white noise ��t� introduced above:

Ẍ + r sign�Ẋ� + 2X = ��t�, 0 � t � tf �15�

Applying the stochastic averaging procedure and following the
derivations made in Ref. �16� the first passage time may be found
as

T�c� =
�Ei�2��c̄� − Ei�2��c��

2�2 −
�c̄ − �c

�
−

ln�c̄/c�
4�2

�16�

c =
E

D/4
, c̄ =

Ē

D/4
, � =

2�2�

�
, � =

r
�D

where Ei�y� is the exponential integral function, D is the noise

intensity, and Ē is the critical value of energy. Thus, an analytical
expression �16� may be used for reliability estimates, keeping in
mind that r should be small. This result may be compared with
one, reported in Ref. �2�, keeping in mind that the value of an
equivalent viscous damping coefficient is equal to

�eq
df =

16r2

3�2D

It can be seen from the comparison with the result for the linear
system �2� that Eq. �16� has an additional second term, which is
non-negative. Moreover, the exponential integral function �16� de-
pends on the square root of the system’s energy, whereas the for-
mula for an equivalent linear system �2� predicts dependence on
the system’s energy itself. Both these facts indicate that the first
passage time to failure for the dry friction system should be less
than that for an equivalent linear system.

Numerical simulations, conducted using the PI method, have
shown that the joint response PDF has a single peak, at small
values of r, which splits into two peaks, moving away from each
other, when the nonlinearity parameter r increases. A peak of the
probability density of time to failure moves left when the value of
r increases, which indicates deterioration of the system’s reliabil-
ity. Figure 1 demonstrates the results of a numerical simulation for
one- and two-sided probability densities of time to failure. It can
be seen from Fig. 1�a� that both densities have similar shapes and

Table 1 Expected time to upcrossing for the dry friction system. All numbers to be Ã103.

p 2.5� 2.5� 3.0� 3.0� 3.5� 3.5�
r One-sided Two-sided One-sided Two-sided One-sided Two-sided

0.15 0.2167 0.1947 0.6009 0.5344 2.6885 2.1427
0.20 0.1344 0.1170 0.3697 0.3166 1.7757 1.2995
0.25 0.0814 0.0689 0.2169 0.1791 1.0834 0.7344
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Fig. 2 One-sided reliability function of the dry friction system for different levels of p
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are almost identical �except the peak value�, which was expected,
since the considered problem is symmetric. Similar behavior has
been observed for other problems investigated here. Thus, figures
for one- and two-sided probability densities of time to failure are
not presented for parametric systems. Figure 2 presents the reli-
ability function for r=0.15 �a� and r=0.25 �b� for different values
of the crossing level p=xc /�x. These results show strong depen-
dence of the reliability function on r, i.e., an increase in r in-
creases the slope of the reliability function, consequently decreas-
ing the time to failure. At first glance, this may seem odd, but
remember that an increase in r leads to a decrease in �x, and
therefore in the critical level. On the other hand, an increase in the
crossing level leads, as expected, to an increase in the first passage
time value for a fixed value of r.

Table 1 presents the results of numerical simulations for the
first passage time. The data in Table 1 may be compared with the
data presented in the first, second, and fourth lines of Table 2.
Direct comparison of these results, for the same level of energy
dissipation in both systems, shows that the dry friction system has
a significantly �at least twice� smaller value of failure time than
that of the equivalent linear system, which indicates a relatively
poor reliability of the dry friction system.

5 Results for Parametrically Controlled Systems
To verify the code and to qualitatively comprehend the new

results, it is proposed to obtain numerical results for a linear sys-
tem, subjected to external Gaussian white noise, in addition to the
Monte Carlo method described in Sec, 3. The results, obtained by
the PI method, very well agreed with the results of MC simula-
tions. To compare these results with results for the considered
nonlinear systems, for small values of nonlinearity parameter, one
has to select a proper value of viscous damping coefficient. It
should be reminded that the value of an equivalent viscous damp-
ing coefficient for stiffness and inertia controlled systems is �eq
=r /�, and this value is tripled for a swing system �18,19�.
Therefore, in order to compare the results it is decided to select
�eq=r /� for r=0.1,0.3,0.5 �=1�. The results for the probability
density function of failure time for the three largest mentioned
values of �eq are shown in Fig. 3. Table 2 presents the results for
the mean time to failure for different values of the equivalent
viscous damping coefficient, corresponding to different values of
r, according to the above mentioned formulas.

5.1 System With Controlled Stiffness. Consider a stochastic
system with controlled stiffness, whose motion is governed by the
following equation:

Ẍ + 2X�1 + r sign�XẊ�� = ��t�, 0 � t � tf �17�

where 0�r�1. The probability densities are obtained numeri-
cally by extrapolating the probability of no upcrossing by an ex-
ponential function and differentiating this numerically. The sam-
pling points were dense �tsamp=0.16 s so that the differentiation
proved to be very accurate. The transient seemed noisy, but a
closer look would show that there is actually a smooth oscillation.

The peak-to-peak period of this oscillation seems to coincide well
with the effective period of the system �22�. An interpretation is
that the system’s variability has to reach a certain level before the
probability of exceedance is substantially high. The first substan-
tial removal of the high-displacement part of the probability den-
sity gradually starts to affect the exceedance probability approxi-
mately one period later. This behavior is consistent with previous
observations, and the same kind of oscillations is also seen in the
PI results for the equivalent linear system.

Figure 4 presents the results of the failure time PDF as a func-
tion of the nonlinearity parameter r. In Fig. 5 one can observe the
reliability function for different values of the upcrossing level p,

Table 2 Linear system with a damping coefficient �: expected time to upcrossing. All numbers
to be Ã103.

p 2.5� 2.5� 3.0� 3.0� 3.5� 3.5�
� One-sided Two-sided One-sided Two-sided One-sided Two-sided

16·0.152 / �3�2� 0.5594 0.4884 1.7249 1.4670 4.7063 4.3196
16·0.202 / �3�2� 0.3808 0.3165 1.2338 0.9869 4.1552 3.5478

0.10 /� 0.2859 0.2281 0.9370 0.7143 3.5829 2.8099
16·0.252 / �3�2� 0.2810 0.2225 0.9331 0.7046 3.6107 2.8128

0.30 /� 0.1710 0.1149 0.6250 0.3927 2.9383 1.8043
0.50 /� 0.1497 0.0909 0.5743 0.3265 2.8247 1.5878
0.90 /� 0.1376 0.0749 0.5418 0.2831 2.6838 1.4232
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Fig. 3 Probability density of time to failure for the linear sys-
tem with reliability level 2.5 standard deviations and r=0.1, 0.3,
and 0.5
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Fig. 4 Probability density of time to failure for the stiffness
control problem with reliability level 2.5 standard deviations
and r=0.1,0.3,0.3, and 0.5
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with r=0.1 �a� and r=0.5 �b� correspondingly. Comparing the
results �a� and �b� indicates that an increase in nonlinearity influ-
ences the system’s reliability much more when small values of the
upcrossing level are selected. Results in Fig. 5 have been com-
pared with results for an equivalent linear system. Direct compari-
son revealed that the behavior of the equivalent system, in terms
of the reliability function, matches the behavior of the stiffness
controlled system for small values of the nonlinearity parameter r.
Meanwhile, detailed comparison for r=0.5 indicates that the stiff-
ness controlled system’s time to failure is bigger than that of the
linear system with the same level of energy dissipation in both
systems. This fact is reflected in Table 3, which shows the mean
failure time for the stiffness controlled system. It should be re-
ported that the observed behavior is different from the behavior of
the two other parametric systems. Namely, it is seen, based on the
numerical results, that there is no monotonic decrease in mean
upcrossing time with a gradual increase in r. However, Monte
Carlo simulations confirm these results for 2.5�x.

5.2 System With Controlled Moment of Inertia. Consider a
system with controlled moment of inertia:

d

dt
��1 + r sign���̇���̇� + 2� = ��t�, 0 � t � tf �18�

where 0�r�1. The exponential behavior for the absorbing prob-
ability density has been observed in this case. Figure 6 presents
results for the probability density function of failure time for p
=2.5 and different values of the nonlinearity parameter. One can
clearly see a trend in the peak shift to the left with the increase of
r. Figure 7 illustrates results for the reliability function for r
=0.1 �a� and r=0.5 �b�, respectively. Comparison with the results
obtained for the stiffness controlled and linear system shows that
the reliability function of the inertia controlled system has a less
steep angle, which indicates that this system is “more” reliable.
This fact is reflected in Table 4, where for small values of r one
can find that Tin�Tsc	Tlin, whereas for large values of r one
obtains Tlin�Tin�Tsc.

5.3 Swings. A governing equation of motion of a mathemati-
cal pendulum with controlled length or swings may be written as

d

dt
�L2�̇� + 2L sin��� = ��t�, 0 � t � tf

�19�
L = �1 + r sign���̇��, 2 = g/L0

For small values of � the nonlinear term in Eq. �19� is changed
to sin�����, thereby giving the linearized equation of a swing.
The smooth oscillatory behavior of the PDF with a frequency
close to its natural frequency has been observed. Figure 8 demon-
strates the results of the numerical simulation for the PDF of
failure time for different values of the nonlinearity parameter r.
All peaks are shifted to the left compared with the peaks for the
other systems investigated above. In Fig. 9 the numerically esti-
mated reliability functions for r=0.1 �a� and r=0.3 �b� are pre-
sented. Since the equivalent damping coefficient for the linearized
system �19� is three times bigger, the result �a� should be com-
pared with the one obtained for the linear system with r=0.3. It
should be reported that the reliability function of the swings has
smaller decay rate, which results in a larger value of mean failure
time. The latter can be observed from Table 5 for the correspond-
ing values of the nonlinearity parameter.

6 Conclusions
In this paper, the authors have considered a first passage type

reliability problem for strongly nonlinear stochastic systems, i.e.,
systems with signum type nonlinearity. The numerical results pre-
sented in this paper are obtained by the path integration method,
which was adjusted to handle reliability problems. The results
were verified by Monte Carlo simulations and the results obtained
by the path integration method for an equivalent linear system.
Generated results demonstrated that the reliability of all the con-
sidered systems strongly depends on the nonlinearity parameter r,
especially for low values of the upcrossing level. It also has been
shown that the systems with parametrically changing parameters
have longer mean time to failure than those of equivalent linear
systems. Thus, the parametrically controlled strongly nonlinear
systems not only provide a way to dissipate the system’s response
energy, but also improve their first passage time reliability. On the
other hand, the dry friction system or the system with an external
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Fig. 5 Reliability function for the stiffness control problem with one-sided barrier for different levels of
p

Table 3 Stiffness control: expected time to upcrossing. All numbers to be Ã103.

p 2.5� 2.5� 3.0� 3.0� 3.5� 3.5�
r One-sided Two-sided One-sided Two-sided One-sided Two-sided

0.1 0.2889 0.2304 0.9513 0.7248 3.6376 2.8612
0.3 0.1865 0.1248 0.7151 0.4453 3.4306 2.1786
0.5 0.1886 0.1130 0.8181 0.4557 4.0836 2.6258
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Table 4 Inertia control: expected time to upcrossing. All numbers to be Ã103.

p 2.5� 2.5� 3.0� 3.0� 3.5� 3.5�
r One-sided Two-sided One-sided Two-sided One-sided Two-sided

0.1 0.4261 0.3261 1.2842 0.8960 5.3885 5.2652
0.3 0.2323 0.1463 0.7717 0.4408 4.8281 4.2013
0.5 0.1574 0.0901 0.5158 0.2766 3.6161 2.3682
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Fig. 7 Reliability function for the inertia control problem with one-sided barrier for different levels of p
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Fig. 9 Reliability function for the swing problem with one-sided barrier for different levels of p
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Fig. 6 Probability density of time to failure for the inertia con-
trol problem with reliability level 2.5 standard deviations and r
=0.1, 0.3, and 0.5
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bounded in magnitude control law has poor reliability compared
with its equivalent linear system, although it is capable of reduc-
ing the system’s response energy.
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Numerical Analysis of Double
Contacts of Similar Elastic
Materials
A fast numerical method based on the Cauchy singular integral equations is presented to
determine the contact pressure and extents for the contact of two-dimensional similar
isotropic bodies when the contact area consists of two separate regions. The partial-slip
problem is then solved to determine shear tractions using an equivalence principle. The
extents of the contact are not all independent but related to a compatibility equation
constraining the displacements of an elastic body in contact with an equivalent rigid
body. A similar equation is found for the extents of the stick zones in partial-slip prob-
lems. The effects of load history are incorporated into the shear solution. The method is
applicable to a wide range of profiles and it provides significant gains in computational
efficiency over the finite element method (FEM) for both the pressure and partial-slip
problems. The numerical results obtained are compared with that from the FEM for a
biquadratic indenter with a single concavity and showed good agreement. Lastly, the
transition behavior from double to single contacts in biquadratic profiles is investigated.
�DOI: 10.1115/1.2967897�

1 Introduction
Two-dimensional contact mechanics is a well-established area

of mechanics with extensive analytical and numerical work to
determine the contact area, pressure, and shear tractions under
partial-slip conditions. For a review see the paper by Barber and
Ciavarella �1�. Assuming that the two contacting bodies can be
treated as half-spaces allows the formulation of the contact prob-
lem as a pair of Cauchy singular integral equations �SIEs� for the
pressure and shear tractions. Due to the strongly singular Cauchy
kernel, analytical and numerical techniques used for ordinary
Fredholm integral equations are not directly applicable. As such,
Muskhelishvili �2� realized this and developed the theory of SIE
using complex variable methods. Using the theory of SIE, solu-
tions have been found for a wide variety of geometries for single
contacts, including flat punches, cylinders, power law punches,
flat punches with rounded edges, wedges, and so on. If the in-
denter has a concavity, then the contact is made over two separate
areas over a certain range of loads and analytical solutions are less
common. Gladwell �3� determined an analytical solution for the
symmetric frictionless contact of a rigid biquadratic punch and an
isotropic half-space. Barber �4–6� has investigated the contact of
axisymmetric concave punches and half-spaces. Shtayerman �7�
obtained a solution for two interconnected flat punches of differ-
ent heights.

It is often necessary to resort to numerical techniques to solve
contact problems; Erdogan �8� developed a well known method to
numerically invert SIEs for single contacts, in which the unknown
function is represented as the product of a function bounded ev-
erywhere and a fundamental function that captures the singular
behavior at the ends. The fundamental functions for SIEs with
constant coefficients are the weight functions of standard orthogo-
nal polynomial functions, whose properties are then used to find
approximate solutions. In this paper, a numerical method is devel-
oped for inverting Cauchy SIEs when the domain consists of two
nonintersecting segments of the real line. This method is then
applied to determine the contact pressure for the indentation of an

elastic half-space by a similar or rigid indenter with a concavity.
The profile is allowed to be asymmetric, as well as a moment can
be applied to the contact. The latter portion of this paper investi-
gates the partial-slip problem and the slip history effects in double
contacts.

With the finite element method �FEM� being as widespread and
general as it is, it is necessary to explain the reasons for the
development of yet another numerical tool for contacts. The rea-
son is that the generality of the FEM comes at a price: It has
significantly longer execution times and it obscures underlying
physical insights that may be gained by using a semi-analytical
approach. For example, all four ends of double contacts are not
independent, but this is not at all obvious from the use of the
FEM. In partial-slip problems, the FEM requires a fine mesh to
accurately capture shear reversals, which generally takes a long
time to solve. It must also be understood that a SIE based tech-
nique is intrinsically faster than the FEM, i.e., the ratio of the
orders of time taken by the FEM to the SIE is not just a simple
numerical factor because the problem is essentially reduced by
one in dimension �solving on the boundary as opposed to solving
over the entire domain�. Furthermore, the preprocessing �mesh-
ing� burden in SIEs is almost nonexistent when compared with the
FEM since a straight line segment is to be meshed. On the other
hand, generating good quality efficient meshes for contact prob-
lems using the FEM is usually a laborious task. It may also be
noted that the reduced computational requirements �in terms of
processing power, primary memory, and secondary storage� allow
SIE based codes to run on average desktops.

2 Theoretical Considerations in Frictionless Smooth
Contacts

When two bodies are brought into contact, the gap function
h�x� between them �Fig. 1� may be written as �9�

h�x� = h0�x� − u1 + u2 − C0 − C1x �1�

where u1 and u2 are the vertical surface displacements of the two
bodies, h0�x� is the initial gap function �or the undeformed in-
denter profile in the case of the indentation of a flat body�, C1 is
the term associated with rigid-body rotation, and C0 with rigid-
body translation. It is assumed that the rotation C1 is small. By
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definition, the gap function has to be zero inside the contact, so
that

u1 − u2 = h0�x� − C0 − C1x �2�
within the contact. The SIE governing the frictionless contact of
two similar isotropic bodies is then given as

dh0�x�
dx

− C1 = A�
L

p�s�
x − s

ds, ∀ x � L �3�

where L is the set of points in contact, p�x� is the pressure trac-
tion, A is a term encapsulating the elastic behavior in the plane
strain, A=4�1−�2� /�E is for similar material contact, and 2�1
−�2� /�E is for rigid-on-isotropic contact. The pressure traction
must satisfy the equilibrium equations

�
L

p�x�dx = P �4�

�
L

xp�x�dx = M �5�

where P and M are, respectively, the applied normal load and the
moment. Positive pressure is considered compressive in the no-
menclature used above. It is important to note that the contact
region L may not be contiguous, i.e., L may be the union of a
number of discrete regions L1,L2 , . . . ,Ln. The contact area L must
be determined such that the pair of inequalities

p�x� � 0, ∀ x � L �6�

h�x� � 0, ∀ x � L �7�
is satisfied. These conditions simply state that the contact pressure
must be compressive inside the contact and there is no interpen-
etration outside the contact �9�. In problems with a single contact
patch, these inequalities are automatically satisfied by ensuring
that the contact pressure goes to zero at the ends of contact. For
multiple contact patches, the boundedness of p�x� at the ends of
contact is only a necessary condition,1 not a sufficient one, i.e., to
obtain a unique solution in the most general contact problems
needs explicit consideration of the inequalities. Kalker �10� ob-
tained a unique solution by formulating a function that is mini-
mized when the inequalities are satisfied. A theorem of Barber �9�

states that the exact contact area maximizes the indentation force
in the frictionless indentation by a rigid body, which he used to
reframe the problem as a variational statement to obtain L. How-
ever, in the case of the 2D double contacts addressed in this paper,
it is possible to obtain a solution without involving the inequalities
explicitly.

Since the contact exists over two patches, consider the decom-
position of the pressure traction p�x� into two functions p1�x� and
p2�x�, such that p1�x� is nonzero only in L1 and p2�x� is nonzero
only in L2. Thus, Eq. �3� can be rewritten as

dh0�x�
dx

− C1 = A�
L1

p1�s�
x − s

ds + A�
L2

p2�s�
x − s

ds,

∀ x � �L = L1 � L2� �8�

3 Numerical Method
To solve the doubly connected contact problem, it is essential to

have a method to numerically invert the Cauchy SIE defined in
two nonintersecting segments of the real axis �while the discus-
sion in this section is in terms of the normal indentation contact
problem, this method is more generally applicable�. From the
theory of singular integral equations �2�, it is known that for so-
lutions to a Cauchy SIE that are bounded at all ends to exist,
certain side �or consistency� conditions have to be satisfied. For
arbitrarily chosen contact regions, these consistency conditions
may not be met, and hence, in single contacts, it is necessary to
admit one singularity in the function p�x� �see Refs. �11,12��. For
the double contact problem, it is clearly necessary to admit two
singularities, one in each of the functions p1�x� and p2�x�. The
necessary singularities are to be introduced in the following
square-root form:2

p1�x� = p0
I �x� + �1�b1 − x

x − a1
, ∀ x � L1 �9�

p2�x� = p0
II�x� + �2�x − a2

b2 − x
, ∀ x � L2 �10�

where p0
I �x� and p0

II�x� are functions that are bounded everywhere
and the �unknown� constants �1 and �2 are coefficients of the
singular terms. The left contact L1 extends from a1 to b1 and the
right contact L2 extends from a2 to b2. Writing the pressure in this

1This discussion only applies to smooth �incomplete� contacts, where the contact
size is a function of the applied load; an example of a complete contact is the
indentation of a half-plane by a flat rigid punch where the pressure is unbounded at
the ends.

2For x only � L1 or x only � L2, it may be readily recognized that this is a
Cauchy SIE in which the integral kernel has a nondominant part. This nondominant
part does not alter the singularity behavior at the ends.

Fig. 1 Double contact configuration
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“sum” form allows easy analytical integration of the singular part
of the tractions. Notice that the form of the singularities admitted
is symmetric �i.e., at the left-end of the left contact and at the
right-end of the right contact�. This simplifies the solution of sym-
metric problems.

Substituting these expressions for the pressure in Eq. �8� leads
to

1

A
	dh0�x�

dx
− C1
 = �

m=1

2 �
am

bm p0
m�s�

x − s
ds + �1�

a1

b1 �b1 − s

s − a1

ds

x − s

+ �2�
a2

b2 �s − a2

b2 − s

ds

x − s
�11�

To solve the equation numerically, the domains L1 and L2 are
discretized by division into NI+1 and NII+1 node points �or inte-
gration points�, respectively. Equation �11� is enforced at NI+NII

and collocation points xk
I and xk

II in the regions L1 and L2, respec-
tively. The node points and collocation points have to be as far
away from each other as possible for the accurate evaluation of
the integrals, and for this purpose each collocation point is set
equidistant from its neighboring node points. Now Eq. �11� can be
rewritten as the pair of equations

1

A
	dh0�x�

dxk
I,II − C1
 = �

m=1

2 �
am

bm p0
m�s�ds

xk
I,II − s

+ �1�
a1

b1 �b1 − s

s − a1

ds

xk
I,II − s

+ �2�
a2

b2 �s − a2

b2 − s

ds

xk
I,II − s

�12�

The integrals containing singularities can be evaluated analyti-
cally using the following:

�
a

b
1

x − s
	 s − a

b − s

�1/2

=���	1 − 	a − x

b − x

�1/2
 if x � a

�� if a � x � b

��	1 − 	 x − a

x − b

�1/2
 if x � b 

Using these results, the two equations become

1

A
	dh0�x�

dxk
I − C1
 =�

a1

b1 p0
I �s�ds

xk
I − s

+ ��1 +�
a2

b2 p0
II�s�ds

xk
I − s

− ��2	1 − 	a2 − xk
I

b2 − xk
I 
1/2
 �13�

1

A
	dh0�x�

dxk
II − C1
 =�

a1

b1 p0
I �s�ds

xk
II − s

+ ��1	1 − 	 xk
II − a1

xk
II − b1


1/2

+�

a2

b2 p0
II�s�ds

xk
II − s

− ��2 �14�

Next, the domains of the integrals are discretized as discussed
above. The integration points in the two regions are given by

si = a1 + �i − 1��sI = a1 + �i − 1�
b1 − a1

NI �15�

sj = a2 + �j − 1��sII = a2 + �j − 1�
b2 − a2

NII �16�

The integrals can then be replaced with summations, for ex-
ample, the first integral in Eq. �13� becomes

I1 =�
a1

b1 p0
I �s�

x − s
ds � �

i=1

NI

�
si

si+1
p0

I �s�
x − s

ds �17�

In between node points, the functions p0
I �x� and p0

II�x� are as-
sumed to be piecewise linear as follows:

p0
I �s� � p0

I �si� + �s − si�
p0

I �si+1� − p0
I �si�

�sI �18�

p0
II�s� � p0

II�sj� + �s − sj�
p0

II�sj+1� − p0
II�sj�

�sII �19�

Thus the integral in Eq. �17� becomes

I1 = �
i=1

i�k

NI �p0
I �si��ln	 �xk

I − si�
�xk

I − si+1�

�1 +

si

�sI −
xk

I

�sI� + 1� + p0
I �si+1�

	�ln	 �xk
I − si�

�xk
I − si+1�


�−
si

�sI +
xk

I

�sI� − 1�� + p0
I �sk� − p0

I �sk+1�

�20�
The other three integrals can be evaluated in a similar way; if

the collocation point lies inside the domain of integration for any
term in the sum, it is evaluated as a Cauchy principal value. After
carrying out these operations, the result is NI+NII equations in
NI+NII+4 unknown variables p0

I �si� �NI+1 unknowns�, p0
II�sj�

�NII+1 unknowns�, and the two singularity coefficients �1 and �2.
Adding the condition that the pressure must be bounded and zero
at all contact ends yields four additional equations: p0

I �a1�=0,
p0

I �b1�=0, p0
II�a2�=0, and p0

II�b2�=0. It is now possible to invert
the system for the unknown nodal pressures for a set of guesses
a1, b1, a2, b2, and C1.

The nodal pressures thus obtained satisfy the global equilibrium
equations if their nonsingular part satisfies

�
a1

b1

p0
I �x�dx +�

a2

b2

p0
II�x�dx = P �21�

�
a1

b1

xp0
I �x�dx +�

a2

b2

xp0
II�x�dx = M �22�

4 The Symmetric Indentation Problem
Consider a problem in which the applied moment M =0 and the

profile is symmetric, in which case, C1=0, b2=−a1, b1=−a2, and
�1=�2=�. Thus, there are only two unknowns. There are two
conditions to be satisfied, namely, P and �=0. A 2D Newton–
Raphson scheme may be set up, which converges rapidly starting
from an initial guess for the contact size as follows:

�a1

b1
�

i+1

= �a1

b1
�

i

+ �
�P

�a1

�P

�b1

��

�a1

��

�b1

�
−1

�P − Pi

0 − �i
� �23�

where Pi is the integral of the nonsingular part of the pressure
tractions over L in the ith iteration calculated using Eq. �21�. The
gradients in the matrix are evaluated numerically by calculating
function values at neighboring points as follows ��a1 is a small
change in a1�:

�P

�a1
�

P�a1 + �a1,b1� − P�a1,b1�
�a1

�24�

The iteration procedure is continued until the values Pi and �i
converge to within some prespecified tolerance.
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For the symmetric problem, the results of the frictionless inden-
tation of an elastic half-space by a rigid biquadratic punch3 with
the explicit equation

h0�x� =
x4

8Rc2 −
x2

4R
+

c2

8R
�25�

are shown in Fig. 2. The results compare well with Gladwell’s
analytical solution �3� �presented here in a slightly different form�
as

p�x� = E
�x��b2 − x2�x2 − a2

4�1 − �2�Rc2 , a � �x� � b �26�

2c2 = a2 + b2 �27�
Both axes are normalized. The traction normalization constant

is P� =Ec /4�1−�2�R and the applied normal load normalization
constant is F*=c2 /AR. The parameter c is half the distance be-
tween the local minima of the punch. For this work, the value of
c /R=0.08 and the composite parameter P*=3.796	105 are used
throughout. Clearly, there is excellent agreement between the SIE
method and the analytical results. As expected, the contact size
increases with increased normal load and the two contacts grow
toward each other. Beyond a certain critical value P� Pcrit, the
two contacts will merge into one and a single contact solver has to
be used. The transition behavior from two contact patches to one
contact patch is discussed in more detail later.

5 The Asymmetric Indentation Problem
When a moment M is present, or the profile is not symmetric,

the problem is more complicated. In this case, there are five un-
knowns �a1, b1, a2, b2, and C1� and nothing is known about them
a priori, unlike the symmetric problem. The conditions to be sat-
isfied are the resultant loads P, M, and the two conditions for the
singularity coefficients �1=0 and �2=0 �which imply that a so-
lution bounded at all ends is sought�. Thus, one more condition is
needed to solve the problem as follows. Any frictionless problem
can be reduced to the equivalent indentation of a half-space by a
rigid indenter. If the Poisson ratios are set equal, then E* �for rigid
on isotropic� =Es�similar� /2. Now consider the contact over the
two regions L1= �a1 ,b1� and L2= �a2 ,b2�. Since the end points b1
and a2 come into contact with the rigid indenter, they must satisfy
the condition

h0�a2� − h0�b1� − C1a2 + C1b1 =�
b1

a2

u��x�dx �28�

where h0�a2� and h0�b1� are the initial gap functions at the points
a2 and b1, and u��x� is the slope of the vertical displacement at the
surface of the half-space given by

u��x� = A��
a1

b1 p0
I �s�

x − s
ds +�

a2

b2 p0
II�s�

x − s
ds�, ∀ x �29�

and A is given by

A =
2�1 − ��

2�
�E�

=
4�1 − �s

2�
�Es

�30�

The physical basis of Eq. �28� is that a rigid indenter can only
experience rigid-body motions. It is very important to note that an
arbitrarily chosen set of a1, b1, a2, b2, and C1 will not satisfy Eq.
�28� above. Thus, let a new function V �a rigid-body displacement
compatibility violation function� be defined as

V�a1,b1,a2,b2,C1� = h0�a2� − h0�b1� − C1a2 + C1b1 −�
b1

a2

u��x�dx

�31�

It is clear that V=0 for the correct solution.4 Equation �31� is
easy to compute after the pressures are known for a set of a1, b1,
a2, b2, and C1 guess values by using Eq. �29�. Thus, with V=0 as
the fifth condition, the problem is rendered tractable. A five-
dimensional Newton iteration scheme is used to converge from an
initial guess of a1, b1, a2, b2, and C1 so as to satisfy P, M, �1
=0, and �2=0 and V=0 as follows:

�
a1

b1

a2

b2

C1


i+1

=�
a1

b1

a2

b2

C1


i

+�
�P

�a1

�P

�b1

�P

�a2

�P

�b2

�P

�C1

�M

�a1

�M

�b1

�M

�a2

�M

�b2

�M

�C1

��1

�a1

��1

�b1

��1

�a2

��1

�b2

��1

�C1

��2

�a1

��2

�b1

��2

�a2

��2

�b2

��2

�C1

�V

�a1

�V

�b1

�V

�a2

�V

�b2

�V

�C1

�
−1

�
P − Pi

M − Mi

0 − �1i

0 − �2i

0 − Vi


�32�

where the subscript i indicates values obtained after i iterations,
and Pi and Mi are obtained by integrating the nonsingular part of
the pressure tractions over L. The gradients in the matrix are
evaluated numerically as before. The asymmetric indentation
problem for contacting bodies with similar material properties and
a biquadratic profile indenter is considered. Different moments
were applied at one fixed value of the normal load. The SIE re-

3Gladwell �3� used the term “interconnected parabolic punches;” “biquadratic” is
used here to emphasize that the profile is not strictly parabolic.

4In other words, of all admissible solutions that are bounded everywhere, the
physically correct solution is the one that satisfies V=0.
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Fig. 2 Analytical „solid lines… and SIE „markers… normalized
pressure tractions p„x… /P* versus x /c for different loads
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sults �Fig. 3� were compared with the ABAQUS/STANDARD FEM
software using four-noded bilinear plane strain elements. The con-
tact element size was c /100 and the applied moment normaliza-
tion constant was M*=c3 /AR. There is excellent agreement be-
tween the FEM and the SIE predictions. The convergence time for
the SIE method on a standard desktop PC was less than half a
minute. With increasing moment, the difference between the right
and left peak pressures increases, and the left contact shrinks in
size. Eventually, at some moment Mcrit, the left contact will “lift
off,” and once again, a single contact solver should be used. �Of
course, a counterclockwise moment −Mcrit would have had the
effect of making the right contact lift off.�

6 The Partial-Slip Problem for Elastically Similar
Bodies

If friction is present, the contact can transmit shear tractions in
addition to normal tractions. The simple Amontons–Coulomb fric-
tional model is used here to develop a numerical method to deter-
mine the shear traction. It is assumed that the normal load P and
the moment M are applied first, and then, while they are held
constant, a shear load Q is applied to the contact �the Cattaneo–
Mindlin problem�. The extents of the contact pressure traction
p�x� and the rotation C1 can be found as discussed above and are
assumed as known in Secs. 6.1 and 7. The approach is to use the
equivalence between the pressure and shear problems for double
contacts. In particular, it is concluded that the equivalent problem
has the same “rigid-body violation” relationship as a doubly con-
nected normal indentation problem. �The pressure-shear equiva-
lence is quite general and applies to a wider variety of problems
than discussed here; see Refs. �13–15�.�

6.1 Stick-Slip Configuration in Partial Slip. Consider the
application of a shear load Q less than 
P in magnitude where 

is the coefficient of friction. It is quite easy to determine that there
should be four slip zones in the general case, as follows. By anal-
ogy with single contacts, assume that no slip is allowed whatso-
ever. Thus, the shear solution for the double contact will resemble
the pressure solution for the indentation of a half-space by a
double-flat punch, leading to four singularities at the four contact
ends. Consequently, in the absence of an infinite coefficient of
friction, four slip zones are expected in all, with one slip zone at
the end of each contact. There is a stick zone between each pair of
slip zones.

6.2 Equivalent Pressure Problem. Consider the application
of a shear load Q after applying a normal load P. It will be

assumed that the load Q is applied in such a way as to produce no
moment at the contact. The SIE for the shear traction q�x� is given
in the stick zones as

�dg�x�
dx

�
prev

= A�
L

q�s�
x − s

ds, ∀ x � S �33�

where S is the set of all points in the stick zone. Also, in the stick
zones, the maximum value of shear traction is limited as per the
Amontons–Coulomb friction model

�q�x�� � 
p�x� �34�

In the slip zones,

q�x� = sgn	dg�x,t�
dt



p�x� �35�

where g�x , t� is the slip function. In the absence of slip history
�i.e., the left hand side of Eq. �33� is zero�, consider the decom-
position of q�x� into two shear functions in the two contacts as
follows, where it is understood that q1�x� is zero in L2 and q2�x� is
zero in L1:

0 = A�
L1

q1�s�
x − s

ds + A�
L2

q2�s�
x − s

ds: x � �S = S1 � S2� �36�

For positive applied shear Q, each of the shear functions can be
rewritten in terms of pressure in the contact and corrective shear
tractions q1

� and q2
� as follows:

q1�x� = 
p1�x� − q1
��x� �37�

q2�x� = 
p2�x� − q2
��x� �38�

where each corrective shear function is nonzero only in the stick
zone of that particular contact.

0 = A�
L1


p1�s�
x − s

ds − A�
L1

q1
��s�

x − s
ds + A�

L2


p2�s�
x − s

ds

− A�
L2

q2
��s�

x − s
ds: x � �S = S1 � S2� �39�

Using the pressure equation �8� and rearranging

1

A
	


dh0�x�
dx

− 
C1
 =�
S1

q1
��s�

x − s
ds +�

S2

q2
��s�

x − s
ds, ∀ x � S

�40�
This equation is identical to the pressure equation �8�, with

values of the gradient dh0 /dx and rotation C1 scaled by the coef-
ficient of friction 
 and defined over a domain S as opposed to L.
It is to be noted that the corrective tractions approach zero at the
ends of the stick zones just as the pressures approach zero at the
ends of the contacts. The resultant load condition to be used is
obtained by integrating and adding Eqs. �37� and �38� as

�
S1

q1
��x�dx +�

S2

q2
��x�dx = 
P − Q �41�

Once it is recognized that the problem for partial stick can be
converted into an equivalent double contact pressure problem, it is
easy to see that the ends of the stick zone must satisfy a rigid-
body condition similar to Eq. �28�, i.e., for the equivalent problem


�h0�aq2� − h0�bq1�� − C2aq2 + C2bq1 =�
bq1

aq2

u���x�dx �42�

where S1= �aq1 ,bq1� and S2= �aq2 ,bq2�. We can now proceed ex-
actly as in the pressure solution, with the exception that the rota-
tion term C2=
C1 is known a priori. A new parameter Vq can be
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Fig. 3 SIE „solid lines… and FEM „markers… normalized pres-
sure tractions p„x… /P* versus x /c for P /F*=0.1677 and different
moments M /M*
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defined just as in Eq. �31�, which quantifies the violation in Eq.
�42�. A four-dimensional Newton iteration scheme is used to con-
verge from an initial guess of aq1, bq1, aq2, and bq2 so as to satisfy
Q, �1=0, �2=0, and Vq=0 as follows:

�
aq1

bq1

aq2

bq2


i+1

= �
aq1

bq1

aq2

bq2


i

+ �
�Q

�aq1

�Q

�bq1

�Q

�aq1

�Q

�bq2

��1

�aq1

��1

�bq1

��1

�aq1

��1

�bq2

��2

�aq1

��2

�bq1

��2

�aq1

��2

�bq2

�Vq

�aq1

�Vq

�bq1

�Vq

�aq1

�Vq

�bq2

�
−1

�
Q − Qi

0 − �1,i

0 − �2,i

0 − Vq,i


�43�

The subscripts i are used for values obtained after i iterations.
We can proceed similarly in case a negative load Q is applied; the
sign of shear is negative in the slip zones and Eqs. �37� and �38�
are replaced with

− q1�x� = 
p1�x� + q1
��x� �44�

− q2�x� = 
p2�x� + q2
��x� �45�

and the resultant to be used is given by

�
S1

q1
��x�dx +�

S2

q2
��x�dx = − 
P − Q �46�

The load sequence for partial-slip problems is as follows: P and
M are applied in the first step to make the contact and while they
are held constant, shear load Q is applied in the second step. The
shear traction results for P /F*=0.1677, M /M*=0, and different
values of Q from 0 
P to 0.69 
P �the value of 
=0.55 in this
and subsequent sections� are shown in Fig. 4. The points where
the shear traction begins to deviate from the 
p�x� line are the
ends of the stick zone. In the absence of a moment, the left and
right stick zones are symmetric, and the two stick zones diminish
in size as the shear load Q is increased. Gross sliding will even-
tually occur when the applied load Q=
P. In Fig. 5, P /F*

=0.1677, M /M*=0.0314, and Q varies from 0 
P to 0.84 
P.
Again, there is good agreement between the SIE and the FEM. In
this case, the left stick zone shrinks faster than the right stick
zone. In fact, if the shear load Q is increased further, the stick

zone in the left contact disappears completely while the right stick
zone is still present, as shown in Fig. 6. This is to be expected at
high shear loads in asymmetric double contacts and corresponds
to the lift-off due to rotation in the equivalent pressure problem.

7 The Partial-Slip Problem With Slip History
In Sec. 6, the history-free shear problem was considered. Next,

consider a simple loading sequence as follows, with only the nor-
mal load P and the moment M applied in the first step to make the
contact, and a maximum shear load +Q applied in the second step.
What happens when the shear load is decreased from this maxi-
mum in a third step while keeping the normal load constant? For
an infinitesimal dQ�0, it is expected that both contacts will go
into complete stick everywhere. Further decrease in Q causes slip
zones with shear tractions of opposite signs to develop at the ends
of the contacts. In this case the dg /dx term on the left hand side of
Eq. �33� is nonzero and thus Eq. �40� becomes

1

A
	


dh0�x�
dx

− �dg

dx
�

prev
− 
C1


=�
S1

q1
��s�

x − s
ds +�

S2

q2
��s�

x − s
ds, ∀ x � S �47�

Again, this equation can be treated as an indentation problem,
with the only difference that the additional term dg /dx �prev has to
be incorporated into the profile gradient. Additionally, the profile
used in the equivalent rigid-body violation condition has to be
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Fig. 4 SIE „solid lines… and FEM „markers… normalized shear
tractions q„x… /P* versus x /c for P /F*=0.1677, M=0, and differ-
ent values of Q
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Fig. 5 SIE „solid lines… and FEM „markers… normalized shear
tractions q„x… /P* versus x /c for P /F*=0.1677, M /M*=0.0314,
and different values of Q
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and a value of Q at which there is only one stick zone
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modified by the slip function g�x� calculated at the end of the
previous step


�h0�aq2� − h0�bq1�� − g�aq2� + g�bq1� − C2aq2 + C2bq1

=�
bq1

aq2

u���x�dx �48�

An analogous procedure can be developed for the case when
the shear load decreases to a minimum value −Q in the second
step and then starts increasing in the third step. The load sequence
used to study history effects was as follows: P and M are applied
in the first step to make the contact and are held constant in
subsequent steps. A shear Q is applied in the second step. Q is
decreased successively in the later steps. Figure 7 compares the
SIE and the FEM results for P /F*=0.1887, M =0, and Q de-
creased from 0.81 
P in the second step to 0.41 
P in the third
step. Notice the reversal of the sign of the shear tractions in the
slip zones, and the effect of the “locking-in” of slip in the stick
zones. Finally, Fig. 8 shows the shear tractions at intermediate Q
values for a load sequence involving the complete reversal of the
shear from Q=0.71 
P to −0.71 
P for P /F*=0.1887 and
M /M*=−0.0314.

8 Other Profiles
While the biquadratic punch has been used as the test profile so

far, the SIE method works for any profile that is C1 continuous
within regions that come into contact. Figure 9 shows examples of
the application of the SIE technique to two other kinds of profiles
�material properties and 
 are as before�. The plot on the left
shows the normalized pressure tractions obtained using the SIE
when a half-space is indented by a similar double-flat punch with
rounded edges. The profile �not to scale� is also plotted. The pa-
rameters of this punch were as follows: All radii are R
=3.05 mm, both flat lengths are 0.375R, and the inner flat-end to
flat-end separation is f =0.18R. The applied normal load P
=1050 N /mm and the moment M =178 N /mm. It must be noted
that traction gradients near the contact ends for flat with rounded
type profiles become steeper as the ratio of the radius to the flat-
length decreases and getting a converged FEM solution becomes
computationally very expensive in such cases.
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Fig. 8 SIE „solid lines… and FEM „markers… normalized shear
tractions q„x… /P* versus x /c for P /F*=0.1887 and M /M*=
−0.0314. Intermediate shear tractions when Q is reduced from
0.71 �P to −0.71 �P are shown.
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Fig. 7 SIE „solid lines… and FEM „markers… normalized shear
tractions q„x… /P* versus x /c for normal loads P /F*=0.1887 and
M=0. The shear traction reverses sign in the slip zones when Q
is reduced from 0.81 �P to 0.41 �P.
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The plot on the right in Fig. 9 shows normalized shear tractions
obtained using SIEs for a pair of connected cylindrical indenters
in partial slip. Both cylinders have a radius of R=12.7 mm and
the separation between their minima is c=0.08R. A normal load of
P=1751 N /mm and M =222 N /mm are applied in the first step
and kept constant throughout. A shear load Q=0.455 
P is ap-
plied in the second step and partially reversed to Q=0 in the third
step. 1200 collocation points were used to obtain both solutions.
The x-axes of both plots are normalized by the respective apparent
contact half-lengths.

9 Comparison of SIE and FEM Run Times
It is helpful to consider some representative problems to com-

pare the run times of the SIE solver and the FEM. Three different
problems are chosen. Problem I is a single step normal indentation
problem with applied P ,M for a double flat with a rounded punch.
Problem II is a two-step partial-slip problem for the biquadratic
indenter and Problem III is a three-step partial-slip problem with
shear reversal for a biquadratic indenter. For simplicity, only
analysis times are considered since the preprocessing time in FEM
�while significantly greater than SIE, where it is nonexistent� var-
ies considerably. Table 1 shows the run times and other key analy-
sis parameters using both the FEM and the SIE to get converged
tractions for these three problems. The SIE solver was run on a
single CPU desktop PC. The ABAQUS/STANDARD FEM analyses
were run on a 4-CPU compute server. Even so, it is clear that the
SIE is much faster than the FEM for these problems, with the
greatest advantage in partial-slip problems with shear reversal.
Table 1 also gives a clear picture of the kind of fine meshes
needed to achieve converged tractions in both the FEM and the
SIE. While these results compare single analyses, the SIE solver’s
computational advantage over the FEM is even greater in para-
metric studies in which the geometry is a parameter �e.g., varying
the c /R ratio for the biquadratic indenter�.

10 Transition to a Single Contact Problem
It has been mentioned previously that a double contact problem

can transition to a single contact one depending on the applied
loads. There are two ways for this to happen. The first way �called
Type A for convenience� is by applying an increasing normal load
P� Pcrit, which causes the two contact patches to merge into one.
The exact value of this critical normal load depends on the mate-
rial properties and geometry but is also moment dependent. The
second way �Type B� is by applying a large moment M so that one
of the contacts lifts off.

In the absence of an applied moment, it is possible to obtain an
analytical expression for Pcrit for a biquadratic punch for the Type
A transition as follows. Consider a biquadratic indenter with an
applied load P� Pcrit. Clearly, it is in the simply connected re-
gime. Now

�P − Pcrit� → 0 ⇒ p�x��x=xc=0 → 0 �49�

This result follows directly from symmetry considerations. Fur-
thermore, consider two points 0− and 0+ to the left and right of 0,
respectively, when P= Pcrit. Since the contact is still unbroken at
these points, p�0−��0 and p�0+��0, which implies that there is a
local minimum at the point x=0 if p�x� is a smooth function. The
important thing to note is that the analysis can be carried out

entirely in the single contact regime, where by using a sine-series
solution �more details on the sine-series technique are available in
Ref. �9��, the pressure function is given by

p��� =

P

�a
+

1

�Aa
+ 	 a2

4R
−

a4

8Rc2
cos�2�� −
1

�Aa

a4

16Rc2cos�4��

sin���
�50�

where a is the contact half-length and x=a cos���. Using the con-
ditions above and considering that the pressure has to vanish at
the contact end points �=0, �=� directly lead to

Pcrit,sym =
c2

4AR
�51�

In case a moment Mcrit is applied, the form of the pressure
solution is no longer simple; the location of the minimum point xc
shifts from x=0 and is unknown. The zero traction and local mini-
mum conditions, however, continue to hold at this point and, to-
gether with the contact end conditions, can be written as

0 = p0 + p2 + p4 �52�

0 = p1 + p3 �53�

0 = p0 + p1 cos��c� + p2 cos�2�c� + p3 cos�3�c� + p4 cos�4�c�
�54�

0 = p1 sin��c� + 2p2 sin�2�c� + 3p3 sin�3�c� + 4p4 sin�4�c�
�55�

where �c corresponds to xc in transformed coordinates and pi are
coefficients in the pressure cosine series, which are related to the
applied loads, contact half-length a, eccentricity e, and the coef-
ficients of the sine series hn of the biquadratic profile. The equa-
tions given above can be converted to a set of four equations in
the unknowns Pcrit, a, e, and �c, which can be solved numerically
for a given moment M =Mcrit, thus allowing us to trace the Type A
boundary, as shown in Fig. 10. It can be seen that for Pcrit
� Pcrit,sym, the presence of a moment increases the value of Pcrit to
cause the transition. Furthermore, it is clear that Type A transition
cannot occur for Pcrit� Pcrit,sym; the transition of Type B can, how-
ever, occur below this value. In this case the conditions at the
transition are not known, so it becomes necessary to solve a series
of contact problems to estimate the transition loads. It must be
emphasized that the above discussion only applies to the transition
behavior in biquadratic punches because of the strong influence of
the profile geometry on determining it.

11 Conclusions
A fast SIE based numerical method was developed to solve 2D

double contact problems for similar isotropic bodies. The method
makes it possible to obtain the contact extents, the pressure trac-
tion, the stick-zone extents, and the shear tractions and allows for
slip history effects, such as shear load reversal. In the pressure, as
well as in the partial-slip problem, it was possible to obtain the
physically correct contact/stick-zone extents using additional
compatibility equations. The results of all analyses were compared
with the FEM using a biquadratic indenter and showed good

Table 1 Comparison of the FEM and the SIE

Problem SIE time
�s�

FEM time
�s�

Real contact
size �mm�

SIE mesh
�mm�

FEM mesh
�mm

Convergence
criterion

SIE
convergence �%�

FEM
convergence �%�

I 15 2800 2.79 0.0023 0.0070 pmax �0.01 �0.5
II 29 3730 2.32 0.0019 0.0064 qmax �0.05 �0.6
III 42 4620 2.33 0.0019 0.0064 qmin �0.25 �2.0
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agreement. The SIE based method provides significant savings in
computational cost over the FEM. Lastly, the transition behavior
from two contacts to one was studied for the biquadratic indenter,
and a technique was developed to predict the normal loads and
moments at which the two contacts merge.
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Dynamic Stability of Cracked
Viscoelastic Rectangular Plate
Subjected to Tangential Follower
Force
Based on the thin plate theory and the two-dimensional viscoelastic differential type
constitutive relation, the differential equation of motion of a viscoelastic plate containing
an all-over part-through crack and subjected to uniformly distributed tangential follower
force is established in Laplace domain. Then, by performing the Laplace inverse trans-
formation, the differential equation of motion of the plate in the time domain is obtained.
The expression of the additional rotation induced by the crack is given. The complex
eigenvalue equations of the cracked viscoelastic plate subjected to uniformly distributed
tangential follower force are obtained by the differential quadrature method, and the �
method is adopted at the crack continuity conditions. The general eigenvalue equations
of the cracked viscoelastic plate subjected to uniformly distributed tangential follower
force under the different boundary conditions are calculated. The transverse vibration
characteristics, type of instability, and corresponding critical loads of the cracked vis-
coelastic plate subjected to uniformly distributed tangential follower force are analyzed.
�DOI: 10.1115/1.2936927�

Keywords: dynamic stability, follower force, viscoelastic plate, crack, differential
quadrature method

1 Introduction
The dynamic stability of elastic systems subjected to follower

force is widely applied in practical engineering, such as beam,
plate, shell, pipe conveying fluid, bridge, and aerofoil. A vast
amount of research work has been performed on the dynamic
stability of the nonconservation elastic rectangular plate. Adali �1�
considered the stability of a rectangular plate under nonconserva-
tive and conservative forces. Leipholz and Pfendt �2� analyzed the
critical force of a rectangular plate with free edges and subjected
it to uniformly distributed follower forces using the extended
Galerkin theory. Wang and Ji �3� investigated the dynamic stabil-
ity of six typical rectangular plates with two opposite edges sim-
ply supported and under the action of uniformly distributed tan-
gential follower force. Zuo and Shreyer �4�, Kim and Park �5�,
Kim and Kim �6�, and Jayaraman and Struthers �7� have intro-
duced solutions involving the problems of divergence and flutter
instabilities of nonconservative plates.

Thin plates are the basic structures in practical engineering.
Some of these with crack damage are not avoidable and are quite
adverse for the normal work of the structures, and the crack can
result in a change of dynamic characteristics and stability. There-
fore, an analysis of the effect of crack damage on transverse vi-
bration and stability of thin plate has important theoretical signifi-
cance. Much research work had been done on the vibration of
plate with crack �8,9�. Lee and Lim �10� determined the natural
frequencies of a rectangular plate with a centrally located crack by
using the Rayleigh method. Solecki �11� studied bending vibration
of a rectangular plate with arbitrarily located rectilinear crack.
Khadem ane Rezaee �12� took an analytical approach and inves-
tigated the vibration of the plate with an all-over part-through
crack. Han and Ren �13� analyzed the effect of cracks on the

dynamic characteristics of plates by means of a model of zero
dimension element with crack. With the development of material
science, viscoelastic rectangular plates have been widely applied
in many engineering fields. In the research on dynamical problem
of viscoelastic plate with crack, Hu and Fu �14� introduced linear
free vibration of a viscoelastic plate with a crack and four edges
simply supported by the Galerkin method. To the authors’ knowl-
edge, few papers have been presented on stability problems for
cracked viscoelastic plates subjected to follower force.

The aim of this paper is to construct the differential equation of
motion of the cracked viscoelastic plate subjected to uniformly
distributed tangential follower force by introducing a viscoelastic
differential operator. The equation is suitable for various linear
viscoelastic differential models. The � method is applied at the
crack continuity conditions. The complex eigenvalue equations of
the cracked viscoelastic plate subjected to follower force consti-
tuted by elastic behavior in dilatation and the Kelvin–Voigt model
for distortion are obtained by the differential quadrature method.
The computational program is prepared to solve the eigenvalue
equations and to obtain the eigenvalue curves. The transverse vi-
bration characteristics and dynamic stability of the viscoelastic
plate containing an all-over part-through crack subjected to uni-
formly distributed tangential follower forces are analyzed.

2 Differential Equation of Motion
Figure 1 shows a viscoelastic rectangular thin plate subjected to

uniformly distributed tangential follower forces q0 and with an
all-over part-through crack of depth h1 in the z direction. The edge
is parallel to the y direction, and the location is at x=a1. The plate
has the length a, width b, and thickness h in the x, y, and z
directions, respectively. The thin plate is divided by a crack into
two domains.

The three-dimensional linear viscoelastic differential constitu-
tive equations is are

P�sIij = Q�eIij
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P��Iii = Q��Iii �1�

where the differential operator P�=�k=0
l pk��d

k /dtk�, Q�
=�k=0

r qk��d
k /dtk�, P�=�k=0

l1 pk��d
k /dtk�, Q�=�k=0

r1 qk��d
k /dtk�; pk� ,qk�,

and pk� ,qk� depend on the properties of the material; eij and sij are
the deviatoric tensor of stress and strain, respectively; �ii and �ii
are the spherical tensor of stress and strain, respectively.

According to the Kirchhoff hypothesis, the thin plate is an in
plane stress ��z=0�. The stress component of each point in the
plate is �Ix, �Iy, �Ixy, �Ix, �Iy, �Ixy �I=1,2�. The constitutive equa-
tions of the linear viscoelastic material in the Laplace domain �15�
are

P̄��P̄�Q̄� + 2Q̄�P̄���̄Ix = Q̄��2P̄�Q̄� + Q̄�P̄���̄Ix + Q̄��P̄�Q̄�

− Q̄�P̄���̄Iy

P̄��P̄�Q̄� + 2Q̄�P̄���̄Iy = Q̄��P̄�Q̄� − Q̄�P̄���̄Ix + Q̄��2P̄�Q̄�

+ Q̄�P̄���̄Iy

Q̄��̄Ixy = P̄��̄Ixy �2�

where P̄�, Q̄�, P̄�, and Q̄� are the Laplace transform of the differ-
ential operator P�, Q�, P�, and Q�.

The geometry equations of the viscoelastic plate are the same as
those of the elastic plate. According to D’Alembert’s principle, an
equilibrium equation of the viscoelastic plate subjected to uni-
formly distributed tangential follower force is given by

�2MIx

�x2 + 2
�2MIxy

�x�y
+

�2MIy

�y2 − q0�a − x�
�2w

I
*

�x2
− �h

�2w
I
*

�t2
= 0 �3�

where � is the density of material, q0 is a force per unit area,
w

I
* �I=1,2� is the transverse displacement of the plate or deflec-

tion, and Mx, My, and Mxy are defined as the bending moment and
twisting moment on the per unit width of the plate, respectively.

For convenience, let P̄0= P̄�Q̄�+2Q̄�P̄� in Eq. �2�, i.e., P̄0
=�k=1

m �p0�ks1
k, where �p0�k is the coefficient depending on the ma-

terial property and the polynomial P̄0 about the Laplace variable
s1 is independent of spatial coordinates. Multiplying the result of

the Laplace transformation of Eq. �3� by P̄0P̄�, if the partial de-
rivative is continuous, Eq. �3� can be rewritten as

P̄�� �2�P̄0�M̄Ix��
�x2 � + 2P̄0� �2�P̄��M̄Ixy��

�x�y
� + P̄�� �2�P̄0�M̄Iy��

�y2 �
− P̄0P̄�q0�a − x�

�2w̄I

�x2 − �hP̄0P̄�s1
2w̄I = 0 �4�

where w̄I is the Laplace transform of the deflection w
I
*.

Substituting the relations of the Laplace transformation of the
bending moment Mx ,My and the twisting moment Mxy into Eq.

�4�, the differential equation of motion of the viscoelastic plate
subjected to uniformly distributed tangential follower force in the
Laplace domain is derived as

h3

12
Q̄��2P̄�Q̄� + Q̄�P̄���4w̄I + P̄��P̄�Q̄� + 2Q̄�P̄���hs1

2w̄I

+ P̄��P̄�Q̄� + 2Q̄�P̄�� + q0�a − x�
�2w̄I

�x2 = 0 �5�

Equation �5� is suitable for various linear viscoelastic differen-
tial constitutive relations, and the corresponding differential equa-
tions of motion are derived by introducing the Laplace transform

P̄�, Q̄�, P̄�, and Q̄� of the differential operator.
We assume that the material of the plate obeys the elastic be-

havior in dilatation and the Kelvin–Voigt model in distortion. The
constitutive equations are as follows �16�:

sij = 2Geij + 2�ėij

�ii = 3K�ii �6�

where G, �, and K are the shear elastic modulus, viscous coeffi-
cient, and bulk elastic modulus, respectively. Performing the
Laplace transformation of Eq. �6�, one can obtain the polynomial

P̄�=1, Q̄�=2G+2�s1, P̄�=1, and Q̄�=3K. Substituting the above
polynomial to Eq. �5� and carrying out the Laplace inverse trans-
formation, the differential equation of motion of the cracked vis-
coelastic plate subjected to uniformly distributed tangential fol-
lower force is

h3

12
�A3 + A4

�

�t
+ A5

�2

�t2��4w
I
* + �h�A1 + A2

�

�t
� �2w

I
*

�t2
+ q0�a − x�

��A1 + A2
�q

�t
� �2w

I
*

�x2
= 0 �7�

where A1=3K+4G, A2=4�, A3=2G�6K+2G�, A4=8G�+12K�,
A5=4�2, K=E /3�1−2��, G=E /2�1+��, and � is Poisson’s ratio.

At the crack location x=xc=a1, one can write the continuity
conditions as follows:

w
1
*�xc

−,y,t� = w
2
*�xc

+,y,t�

w
1,x
* �xc

−,y,t� + 	 − w
2,x
* �xc

+,y,t� = 0

M1x�xc
−,y,t� = M2x�xc

+,y,t�

V1x�xc
−,y,t� = V2x�xc

+,y,t� �8�

where VIx=QIx+MIxy,y and 	 is the additional rotation induced by
the crack. The 
bb denotes the nondimensional compliance coef-
ficient, and gb is a dimensionless function of the relative crack
depth s=h1 /h. These are given by �9,12,14�


bb =�
0

s

gb
2d�

gb = �1/2�1.99 − 2.47� + 12.97�2 − 23.17�3 + 24.80�4� �9�
Performing the Laplace transform of Eq. �8� and multiplying by

the polynomial P̄0 and P̄0P̄�, one yields

w̄1�xc
−,y� = w̄2�xc

+,y�

w̄1,x�xc
−,y� + 	̄ − w̄2,x�xc

+,y� = 0

P̄0�M̄1x�xc
−,y�� = P̄0�M̄2x�xc

+,y��

1a
a

x

y

b

z

1 2
0q

Fig. 1 The cracked viscoelastic rectangular plate subjected to
uniformly distributed tangential follower forces
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P̄0P̄��Q̄1x�xc
−,y�� + P̄0P̄��M̄1xy,y�xc

−,y�� = P̄0P̄��Q̄2x�xc
+,y��

+ P̄0P̄��M̄2xy,y�xc
+,y�� �10�

where

P̄0P̄��Q̄Ix� + P̄0P̄��M̄Ixy,y� = −�
−h/2

h/2

z2P̄�	Q̄0
�3w̄I

�x3 + Q̄1
�3w̄I

�x�y2
dz

− 2�
−h/2

h/2

z2P̄0Q̄�� �3w̄I

�x�y2�dz

P̄0�M̄Ix� = −�
−h/2

h/2

z2	Q̄0
�2w̄I

�x2 + Q̄1
�2w̄I

�y2 
dz ,

P̄0 = P̄��P̄�Q̄� + 2Q̄�P̄��

Q̄1 = Q̄��P̄�Q̄� − Q̄�P̄��, Q̄0 = Q̄��2P̄�Q̄� + Q̄�P̄��

	̄ =
12

3Q̄�Q̄�
�2P̄�Q̄� + P̄�Q̄� −

�P̄�Q̄� − P̄�Q̄��2

2P̄�Q̄� + P̄�Q̄�
�
bb�̄b

�̄b = −
3Q̄�Q̄��2P̄�Q̄� + P̄�Q̄��h

2��2P̄�Q̄� + P̄�Q̄��2 − �P̄�Q̄� − P̄�Q̄��2�
� �2w̄1

�x2

+
P̄�Q̄� − P̄�Q̄�

2P̄�Q̄� + P̄�Q̄�

�2w̄1

�y2 � �11�

Substituting the polynomial P̄�, Q̄�, P̄�, and Q̄� into Eq. �11�
and performing the Laplace inverse transformation of 	̄, one
yields the additional rotation expression

�A6 + A7
�

�t
�	 = − 6h
bb	�A6 + A7

�

�t
� �2w

1
*

�x2
+ �A8 − A7

�

�t
� �2w

1
*

�y2



�12�

where A6=6K+2G, A7=2�, and A8=3K−2G.
Introducing dimensionless parameters and variables,

� =
x

a
,  =

y

b
, wI =

w
I
*

a
, c =

a

b
, r =

h

a
, q =

12q0a3�1 − �2�
Eh3

� =
th

a2 E

12��1 − �2�
, H =

h

a2 E

12��1 − �2�
�

E
�13�

Substituting Eq. �13� into Eq. �7�, one obtains

	1 +
4�2 − ���1 + ��

3
H

�

��
+

4�1 − 2���1 + ��2

3
H2 �2

��2
�4wI

+ q�1 − ��	1 +
4�1 − 2���1 + ��

3�1 − ��
H

�

��

 �2wI

��2

+ 	1 +
4�1 − 2���1 + ��

3�1 − ��
H

�

��

 �2wI

��2 = 0 �14�

where � is the dimensionless time, H is the dimensionless delay
time of material, and �4wI=�4wI /��4+2c2��4wI /��2�2�
+c4��4wI /�4�.

The dimensionless continuity conditions at the crack location
��=�c� is

w1��c
−,,�� = w2��c

+,,��

�w1��c
−,,��

��
−

�w2��c
+,,��

��
= �

B1
�2w1��c

−,,��
��2 + B2c2�2w1��c

−,,��
�2

= B1
�2w2��c

+,,��
��2 + B2c2�2w2��c

+,,��
�2

B1
�3w1��c

−,,��
��3 + B3c2�3w1��c

−,,��
���2

= B1
�3w2��c

+,,��
��3 + B3c2�3w2��c

+,,��
���2 �15�

where B1= (1+ �2 /3��1−2���1+��H�� /���), B2= (�− �2 /3��1
−2���1+��H�� /���), B3= ��2−��+2�1−2���1+��H�� /����,

B1� = − 6r
bb	B1
�2w��c

−,,��
��2 + B2c2�2w��c

−,,��
�2 
 �16�

Suppose that the solution to Eq. �14� takes the form
wI�� , ,��=WI�� ,�ej��, j=−1. A dimensionless differential
equation of motion of the viscoelastic plate is given by

D1�
4WI + q�1 − ��D2

�2WI

��2 − D2�2WI = 0 �17�

where

D1 = 1 −
4�1 − 2���1 + ��2

3
H2�2 +

4�2 − ���1 + ��
3

H�j

D2 = 1 +
4�1 − 2���1 + ��

3�1 − ��
H�j

where � is the dimensionless complex frequency.
Substituting wI�� , ,��=WI�� ,�ej�� into Eq. �15�, the crack

continuity conditions are as follows:

W1��c
−,� = W2��c

+,�

D3� �W1��c
−,�

��
−

�W2��c
+,�

��
�

= − 6r
bb�D3
�2W1��c

−,�
��2 + D4c2�2W1��c

−,�
�2 �

D3
�2W1��c

−,�
��2 + D4c2�2W1��c

−,�
��2

= D3
�2W2��c

+,�
��2 + D4c2�2W2��c

+,�
�2

D3
�3W1��c

−,�
��3 + D5c2�3W1��c

−,�
���2

= D3
�3W2��c

+,�
��3 + D5c2�3W2��c

+,�
���2 �18�

where D3=1+ �2 /3��1−2���1+��Hj�, D4=�− �2 /3��1−2���1
+��Hj�, and D5=2�1−2���1+��Hj�+ �2−��.

3 Complex Eigenvalue Equation
The complex eigenvalue equations of the cracked viscoelastic

plate constituted by the elastic behavior in dilatation and the
Kelvin–Voigt model for distortion are derived by the differential
quadrature method. The differential quadrature method �17� is
used to approximate the partial derivatives of a function with re-
spect to a spatial variable at any discrete point as the weighted
linear sum of the function values at all the discrete points chosen
in the solution domain of the spatial variable. Postulate a smooth
function f�x ,y� in the region 0�x�a, 0�y�b; the partial de-
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rivative of the rth order with respect to x of function f�x ,y� at
point �xi ,yj�, the partial derivative of the sth order with respect to
y, and the mixed partial derivative of the sth order with respect to
y and the rth order with respect to x are, respectively, approxi-
mated as �18�

�rf�xi,yj�
�xr = �

k=1

N

Aik
�r�f�xk,yj� �i = 1,2, . . . ,N; r = 1,2, . . . ,N − 1�

�19�

�sf�xi,yj�
�ys = �

m=1

M

Ajm
�s�f�xi,ym� �j = 1,2, . . . ,M ; s = 1,2, . . . ,N − 1�

�20�

�r+sf�xi,yj�
�xr�ys = �

k=1

N

Aik
�r��

m=1

M

Ajm
�s�f�xi,ym� �21�

where N and M are the numbers of nodes in x and y directions,
respectively; Aik

�r� and Ajm
�s� are weight coefficients, and they are

determined as �19�

Aik
�1� =� �

�=1

��i,k

N

�xi − x����
�=1

��k

N

�xk − x�� �i,k = 1,2, . . . ,N; k � i�

�
�=1

��i

N
1

xi − x�
�i,k = 1,2, . . . ,N; k = i� � �22�

Ajm
�1� =� �

�=1

��j,m

M

�yj − y��� �
�=1

��m

M

�ym − y�� �j,m = 1,2, . . . ,M ; m � j�

�
�=1

��j

M
1

yj − y�
�j,m = 1,2, . . . ,M ; m = j� � �23�

In the case of r=2,3 , . . .,N−1; s=2,3 , . . .,M −1, they are as follows:

Aik
�r� = �

r„Aii
�r−1�Aik

�1� − Aik
�r−1�/�xi − xk�… �i,k = 1,2, . . . ,N; k � i�

− �
�=1

��i

N

Ai�
�r�

„i = 1,2, . . . ,N; 1 � r � �N − 1�…� �24�

Ajm
�s� = �

s„Ajj
�s−1�Ajm

�1� − Ajm
�s−1�/�yj − ym�… �j,m = 1,2, . . . ,M ; m � j�

− �
�=1

��j

M

Aj�
�s�

„j = 1,2, . . . ,M ; 1 � s � �M − 1�…� �25�

According to the procedures of the differential quadrature method, Eq. �17� can be given in the form

�
k=1

N

Aik
�4�Wkj + 2c2�

m=1

N

Ajm
�2��

k=1

N

Aik
�2�Wkm + c4�

k=1

N

Ajk
�4�Wik + q�1 − ���

k=1

N

Aik
�2�Wkj

+ 	 4�2 − ���1 + ��
3

Hj��
k=1

N

Aik
�4�Wkj + 2c2�

m=1

N

Ajm
�2��

k=1

N

Aik
�2�Wkm + c4�

k=1

N

Ajk
�4�Wik +

4�1 − 2���1 + ��
3�1 − ��

Hjq�1 − ���
k=1

N

Aik
�2�Wkj�
�

+ 	− 4�1 − 2���1 + ��2

3
H2��

k=1

N

Aik
�4�Wkj + 2c2�

m=1

N

Ajm
�2��

k=1

N

Aik
�2�Wkm + c4�

k=1

N

Ajk
�4�Wik� − Wij
�2 −

4�1 − 2���1 + ��
3�1 − ��

HjW�3 = 0

�26�

The differential quadrature forms of the continuity conditions Eq. �18� at the crack are

Wcj − Wcj = 0 �j = 1,2, . . . ,N�

D3�
k=1

N

Ac+1,k
�1�Wkj + D3�

k=1

N

Ac+1,k
�1�Wkj + 6r
bb�D3�

k=1

N

Ac+1,k
�2�Wkj + D4c2�

k=1

N

Ac+1,k
�2�Wkj� = 0
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D3�
k=1

N

Ac+2,k
�2�Wkj + D4c2�

m=1

N

Ac+2,m
�2�Wkm = D3�

k=1

N

Ac+2,k
�2�Wkj + D4c2�

m=1

N

Ac+2,m
�2�Wkm

D3�
k=1

N

Ac+3,k
�3�Wkj + D5c2�

k=1

N

Ac+3,k
�1��

m=1

N

Ac+3,m
�2�Wkm = D3�

k=1

N

Ac+3,k
�3�Wkj + D5c2�

k=1

N

Ac+3,k
�1��

m=1

N

Ac+3,m
�2�Wkm �27�

In this paper, choosing N=M, one may note that the boundary
conditions are applied and the continuity conditions at the crack
line are needed. One adopts the weight coefficient method to treat
the boundary problem of the plate with four edges simply sup-
ported, does the � method combined with the weight coefficient
method to treat the boundary conditions of the plate with two
opposite edges simply supported and other edges clamped, and
applies the � method to deal with the crack continuous conditions.
The differential quadrature form of boundary conditions of four
edges simply supported and two opposite edges simply supported
and other edges clamped are given, respectively, by

W1j = WNj = Wi1 = WiN = 0 �i, j = 1,2, . . . ,N�

�
k=1

N

Aik
�2�Wkj = 0 �i = 1,N j = 1,2, . . . ,N�

�
k=1

N

Ajk
�2�Wik = 0 �j = 1,N i = 1,2, . . . ,N� �28�

W1j = WNj = Wi1 = WiN = 0 �i, j = 1,2, . . . ,N�

�
k=1

N

Aik
�1�Wkj = 0 �i = 2,N − 1 j = 2,3, . . . ,N − 2�

�
k=1

N

Ajk
�2�Wik = 0 �j = 1,N i = 1,2, . . . ,N� �29�

Equations �26�–�28� or Eq. �29� can be written into the matrix
form

��3�Q� + �2�R� + ��G� + �K���Wkj� = �0� �30�

where the matrix �Q�, �R�, �G�, and �K� involve such parameters
as dimensionless delay time H, aspect ratio of the plate, dimen-
sionless complex frequency, and crack parameter. Equation �30� is
a generalized eigenvalue problem. Then, the complex eigenvalue
equation of the cracked viscoelastic plate subjected to uniformly
distributed tangential follower force is that coefficient determinant
equal to zero, that is,

��3�Q� + �2�R� + ��G� + �K�� = 0 �31�

By solving the eigenvalue equations, one can obtain the complex
frequency and eigenvalue curves of the viscoelastic plate with
crack. The dynamic characteristic, type of instability, and corre-
sponding critical load of the viscoelastic plate subjected to fol-
lower force are obtained.

4 Numerical Result and Analyses
Let H→0 and s→0. One may obtain the problem of dynamic

stability of the intact elastic plate subjected to follower force. In
the present work, the critical loads of the nonconservative elastic
plate with four edges simply supported �referred to by the letters
SSSS�, two opposite edges simply supported, and two other edges
clamped �CSCS� are first calculated, which can be seen in Table 1,
where qd1, qd2, and qf denote the first order and second order
mode divergence loads and flutter load, respectively. For the case
of c=1, the variations of the first two dimensionless complex
frequencies of the transverse free vibration of elastic plate with
crack are given in Figs. 2 and 3. The natural frequencies of the
plate decrease due to the presence of a crack with the increase in
the crack depth. It should be noted that the existence of the crack
can reduce the stiffness of the elastic plate, and with increase in
the crack depth, the stiffness of the plate structure constantly
decreases.

4.1 Cracked Plate With Four Edges Simply Supported. In
the present work, the dynamic stability of the viscoelastic rectan-
gular plate containing an all-over part-through crack subjected to
uniformly distributed tangential follower force is analyzed.

Figure 4 shows that the variation of the ratio of the real part of
the first two order dimensionless complex frequencies � of the
cracked viscoelastic plate to the real part of the dimensionless
complex frequencies �0 of the intact elastic plate varied with the
crack depth for H=10−3. The crack location changes from �=0 to
the center of the plate �=0.5. This means that the comparison is
made with the results known in the elastic plate. It should be
noted that the frequencies of the viscoelastic plate decrease with
the increase in dimensionless delay time, and due to a crack, the
frequency decreases are more changeable. For a certain value of
the depth, with the crack getting closer to the center of the plate,
the real part of the dimensionless complex frequency � decreases.
For a certain value of the crack location, with an increase in the

Table 1 The critical loads of the elastic plate subjected to follower force with different bound-
ary conditions

Aspect
ratio

Boundary
conditions Present solution Existing solution �3�

c=1 SSSS qd1=67.5 qd2=132.10 qd1=67.4 qd2=131.60
CSCS qd1=143.5 qf =168

c=1.5 SSSS qd1=136.75 qd2=224.72 qd1=136.56 qd2=221.28
CSCS qf =202.75

c=2.0 SSSS qd1=224.8 qd2=340.5 qd1=223.55 qd2=340.34
CSCS qf =251.5
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crack depth, the real part of the dimensionless complex frequency
� decreases, and the corresponding value of the variation ratio
also increases. The second vibration mode takes the same
situation.

Figures 5 and 6 show the variation curve of the cracked plate
for H=10−3 and �=0.5. The plate was subjected to uniformly
distributed tangential follower force q=50. It can be seen that in
the case of a viscoelastic rectangular plate containing an all-over
part-through crack subjected to uniformly distributed tangential
follower force, and comparing the results with those of q=0, the
real part of the dimensionless frequency decreases.

Figures 7–9 show the stability characteristics of the viscoelastic
plate containing an all-over part-through crack and subjected to
uniformly distributed tangential follower force in the case of H

=10−3, �=0.5, s=0.5, and aspect ratios c=1.0,1.5,2.0. As shown
in the figure, the reduction in frequencies and the critical load
decrement of the divergence type are conspicuous due to the
crack. The influence of aspect ratio on the critical loads of the
viscoelastic plate is obvious; with the aspect ratio increase, the
critical loads increase, while the types of instability remain. It can
be compared to the elastic system, where the mode frequencies
and the critical load of the viscoelastic plate decrease. With the
increase in dimensionless delay time, the real part of the dimen-
sionless complex frequency � decreases, while its imaginary part
changes from zero to positive values, and the imaginary values
increase with an increase in H and mode order. This means that
the frequencies decrease, while the damping increases; i.e., the
systems do not behave as undamped harmonic motion but as
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damped vibration. With the increase of q, the real part of � de-
creases, while its imaginary part remains a positive value and
increases with the increase of the mode order. When the follower
force increases to the first order critical load,Re���=0, and
Im����0 and Im����0 occur, which shows that the plate expe-
riences divergence instability. When the follower force further in-
creases to the second order critical load, the real part of the second
order complex frequency becomes zero. Then, the second order
mode shows divergence instability. When the follower force keeps
increasing, the change is the same as the third order mode.

4.2 Cracked Plate With Two Opposite Edges Simply Sup-
ported and Two Other Edges Clamped. Figure 10 shows the
variation of ratio of the real part of the first two order dimension-
less complex frequencies for H=10−3 and c=1.0. It can be seen

that when �=0, the real part of the dimensionless complex fre-
quency � is the biggest, and by getting closer to the center of the
plate, the real part of the dimensionless complex frequency �
decreases; there is a symmetrical curve for the structure.

Figure 11 shows the variation of the first order dimensionless
complex frequencies � of the cracked plate for H=10−3 and �
=0.5. The plate was subjected to uniformly distributed tangential
follower force of q=0,130,140. With increasing uniformly dis-
tributed tangential follower force, the real part of the dimension-
less mode frequency decreases. When q=140, the imaginary part
of the first order dimensionless complex frequency has two
branches with positive and negative values; obviously, this shows
that the plate undergoes divergence instability.

Figure 12 shows the stability of the viscoelastic plate contain-
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ing an all-over part-through crack and subjected to uniformly dis-
tributed tangential follower force in the case of H=10−5, �=0.5,
s=0.5, and aspect ratio c=1.0. As shown in the figure, it can be
compared to the intact nonconservative plate, the reduction in
mode frequencies and the critical load decrement are conspicuous
due to the crack. With the increase of q, the real part of � de-
creases, while its imaginary part remains zero. When the follower
force increases to the first order critical load, the real part of � is
zero. This shows that the plate undergoes divergence instability in
the first order mode; the corresponding critical load is a divergent
load. Subsequently, when Re���=0, and Im����0, and Im���
�0 occur, the plate undergoes divergence instability. When the
follower force further increases to q�164, the plate regains sta-

bility in the first order mode, By maintaining the increase of the
follower force, the plate undergoes a coupled-mode flutter of the
first and third modes.

Figure 13 shows the stability of the viscoelastic plate contain-
ing an all-over part-through crack and subjected to uniformly dis-
tributed tangential follower force in the case of H=10−3, �=0.5,
s=0.5, and aspect ratio c=1.0. For greater dimensionless delay
time, the imaginary parts of dimensionless complex frequencies
no longer remain zero; the first and third modes do not couple.
This shows that the plate does not exhibit a coupled-mode flutter.
With the increase of the follower force, the plate first shows di-
vergence instability in the first mode, then does a single-mode
flutter.
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Figures 14–17 show the stability of the viscoelastic plate con-
taining an all-over part-through crack and subjected to uniformly
distributed tangential follower force in the case of H=10−5 and
H=10−3, �=0.5, s=0.5, and aspect ratio c=1.5,2.0, respectively.
As shown in the figures, the influence of the aspect ratio on the
critical loads and types of instability of the viscoelastic plate is
obvious. When c�1 and H=10−5, the first and second modes
couple. In this case, the instability type are the coupled-mode
flutter, and the corresponding critical load is the flutter load. With
the increase of dimensionless delay time, the first and second
modes undergo a single-mode flutter.

Figures 18 and 19 give the variation of the first three order
dimensionless complex frequencies of the intact plate and cracked
plate with dimensionless follower force for the H=5�10−3. As
shown in the figure, with the increase of follower force, the first

order mode of the cracked plate shows divergence instability; the
corresponding critical load is a divergent load; after then, the in-
tact plate undergoes divergence instability. For greater follower
force, the intact plate undergoes a single-mode flutter, and then the
cracked plate occurs.

5 Conclusion
The numerical method is obtained to investigate the type of

instability of the cracked viscoelastic plate subjected to follower
force with different boundary conditions. The differential quadra-
ture method is developed. The natural vibration characteristics and
dynamic stability of the viscoelastic plate containing an all-over
part-through crack and subjected to uniformly distributed tangen-
tial follower force are investigated. One can obtain a quantitative
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analysis evidence of the influence of the crack damage on the
mode parameter, type of instability, and critical loads.

It can be seen from the results of the numerical calculation that
the presence of crack would affect the vibration characteristics of
the viscoelastic rectangular plate and would lead to local flexibil-
ity increase. As a result, the corresponding stiffness of the plate
diminishes. The existence of the crack can reduce the stability of
the system. The increase of aspect ratios would not affect the type
of instability of the viscoelastic plate subjected to follower force
with four edges simply supported but would increase the critical
loads of each order mode. For smaller dimensionless delay time,
the influence of the aspect ratios for the type of instability of the
viscoelastic plate subjected to follower force with two opposite
edges simply supported and with two other edges clamped is con-

spicuous. In the case of c=1, by increasing the follower force, at
first the plate undergoes divergence instability in the first order
mode, then the plate undergoes a coupled-mode flutter of the first
and third modes. In the case of c�1, with the increase of the
aspect ratios, the corresponding critical load increases obviously.
For greater dimensionless relaxation delay time, in the case of c
=1, at first the plate undergoes divergence instability in the first
mode, and then does a single-mode flutter. In the case of c�1, the
first order and second order modes change the coupled-mode flut-
ter into a single-mode flutter.

The present approach can be extended to a situation showing
the vibration characteristics and the dynamic stability of various
linear viscoelastic differential type model plates containing an all-
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over part-through crack, with different boundary conditions and
subjected to nonconservative and conservative forces.
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Mechanics of Microtubule
Buckling Supported by Cytoplasm
The cytoskeleton provides the mechanical scaffold and maintains the integrity of cells. It
is usually believed that one type of cytoskeleton biopolymer, microtubules, bears com-
pressive force. In vitro experiments found that isolated microtubules may form an Euler
buckling pattern with a long-wavelength for very small compressive force. This, however,
does not agree with in vivo experiments where microtubules buckle with a short-
wavelength. In order to understand the structural role of microtubules in vivo, we devel-
oped mechanics models that study microtubule buckling supported by cytoplasm. The
microtubule is modeled as a linearly elastic cylindrical tube while the cytoplasm is
characterized by different types of materials, namely, viscous, elastic, or viscoelastic. The
dynamic evolution equations, the fastest growth rate, the critical wavelength, and com-
pressive force, as well as equilibrium buckling configurations are obtained. The ability
for a cell to sustain compressive force does not solely rely on microtubules but is also
supported by the elasticity of cytoplasm. With the support of the cytoplasm, an individual
microtubule can sustain a compressive force on the order of 100 pN. The relatively stiff
microtubules and compliant cytoplasm are combined to provide a scaffold for compres-
sive force. �DOI: 10.1115/1.2966216�

1 Introduction
It is believed that the mechanical behavior of an eukaryotic cell

is primarily governed by a network of filament systems called the
cytoskeleton �1�. The cytoskeleton supports a large volume of
cytoplasm as well as provides the mechanical scaffold and main-
tains the integrity of cells �1–3�. Many cellular functions such as
gene expression, cell division, motility, signal transduction,
wound healing, and apoptosis are mediated by the physical prop-
erties of cytoskeleton. There are three major filamentous biopoly-
mers comprising the cytoskeleton: microtubules, actin filaments,
and intermediate filaments. Each cytoskeleton filament has differ-
ent atomic structures and therefore has distinct mechanical func-
tions and properties. For example, a microtubule �Fig. 1�a�� is a
long �up to 50 �m�, hollow cylindrical tube with inner and outer
diameters of 15.4 nm and 25 nm, respectively �1,4�. The tube wall
is formed from a dimerization of globular proteins ��-� tubulins�
with one guanosine triphosphate �GTP� or guanosine diphosphate
�GDP� nucleotide. Under the right conditions, tubulin het-
erodimers will polymerize to form long chained protofilaments
�Fig. 1�b��, which bind to GDP in a circular arrangement to form
a microtubule �1�.

Microtubules are the stiffest biopolymers in cytoskeleton, and
their bending rigidity is about 100 times larger than that of actin
filaments, and therefore it is believed that microtubules typically
carry most of the compressive forces �5–9�. Such large aspect
ratio �25 nm in diameter /50 �m in length�, however, suggests
that isolated microtubules will exhibit classic Euler buckling with
a single long-wavelength buckling pattern, as shown in Fig. 2�a�.
Using the reported bending rigidity EMTI=2�10−23 N m2 �10�,
the critical load for Euler buckling of a microtubule is Pc

=4�2EMTI /L2=0.3 pN, where EMT is Young’s modulus of micro-
tubules, I is the moment of inertia, and L�=50 �m� is the length of
a microtubule. This critical load for buckling is even one order of
magnitude smaller than the microtubule polymerization force
��4 pN� measured in vitro �11�, which suggests that the microtu-
bules cannot sustain compressive force because they would

buckle at a very small critical force. Another contradiction is that
the single long-wavelength buckling pattern �Fig. 2�a�� does not
agree with the highly curved microtubules observed in living cells
�11,12�, as illustrated in Fig. 2�b�.

In order to understand the structural role of microtubules in
living cells, Brangwynne et al. �13� conducted experimental stud-
ies on microtubule buckling in vivo. They found that individual
microtubules can bear compressive forces that are about 100 times
greater in vivo than they can in vitro. In vivo, microtubules also
buckle at short-wavelengths ��=3 �m�. The mechanism for short-
wavelength buckling was qualitatively explained by the lateral
mechanical reinforcement supported by the surrounding elastic
cytoskeleton. This study shed light on the mechanical role of mi-
crotubules in living cells although precise mechanics analysis is
still needed.

This paper presents a structured analysis of the quantitative
mechanics of microtubule buckling. In order to investigate the
effects of surrounding cytoplasm on the buckling of microtubules,
the cytoplasm is modeled using three different types of materials:
viscous, elastic, and viscoelastic. Each cytoplasm model displays
unique yet important results. This paper is organized as follows.
Section 2 describes the microtubule model that is applied for vari-
ous cytoplasm models. The analyses of microtubule buckling on
viscous, elastic, and viscoelastic cytoplasms are given in Secs.
3–5, respectively, along with the corresponding discussions. Sec-
tion 6 summarizes the results and discusses the importance of
this study to biological understanding of the structural role of
microtubules

2 Microtubule Modeling
The microtubule is modeled as an elastic cylindrical tube with

outer diameter Do�=25 nm� and inner diameter Di�=15.4 nm�. The
microtubule is embedded in a three-dimensional cytoplasm and
subject to an axial compressive force P��0� that leads to micro-
tubule buckling with a short-wavelength �Fig. 2�b��. The von Kar-
man theory �14� is used to account for the finite rotation effect in
the buckling analysis. The axial strain in the microtubule is
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�11 =
�u1

�x1
+

1

2
� �u3

�x1
�2

�1�

where u1 is the axial displacement and u3 is the vertical displace-
ment. The coordinate system is shown in Fig. 3, where x1 is in the
axial direction, x2 is in the diameter direction, and x3 is in the
vertical direction. The linearly elastic constitutive model gives the
axial force N11=EMTS�11, where S=� /4�Do

2−Di
2� is the cross-

sectional area of the microtubule. The shear traction T1 and nor-
mal traction T3 at the microtubule/cytoplasm interface can be ob-
tained from the equilibrium of forces �14�

T1 =
�N11

�x1
�2�

and

T3 = EMTI
�4u3

�x1
4 − N11

�2u3

�x1
2 −

�N11

�x1

�u3

�x1
�3�

where I=� /64�Do
4−Di

4� is the moment of inertia of microtubules.
The relatively stiff microtubule/compliant cytoplasm system has
negligible shear stress at the interface, i.e., T1�0 �15�. Equation

�2� then gives constant axial force N11 and constant axial strain
�11.

The buckling profile of the microtubule can be expressed as

u3 = A cos�kx1� �4�
where the multiple short-wavelength buckling pattern is assumed,
the amplitude A and wave number k are to be determined, and
�=2� /k is the buckling wavelength. The constant axial strain �11
gives the axial displacement u1=kA2 sin�2kx1� /8, where the con-
dition 	0

2�/k��u1 /�x1�dx1=0 has been imposed to be consistent

Fig. 1 The structure of a microtubule †1‡. „a… The microtubule
is a hollow cylindrical tube formed from 13 protofilaments
aligned in parallel. „b… One protofilament consists of a string
�-� heterodimers.

Fig. 2 „a… Microtubule buckles to a single long-wavelength
pattern and „b… microtubule buckles to short-wavelength
pattern

Fig. 3 The coordinate system used in the analysis
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with the overall cytoplasm deformation �16�. Due to axial com-
pressive force P, the axial strain then becomes

�11 =
1

4
A2k2 −

P

EMTS
�5�

and the vertical traction T3 at the microtubule/cytoplasm interface
is

T3 = − � cos�kx1� �6�

where

� = − EMTIAk4 − EMTS�1

4
A2k2 −

P

EMTS
�Ak2 �7�

For the buckling profile in Eq. �4�, the bending energy per unit
wavelength of the microtubule becomes

Ub =
k

2�



0

2�/k
1

2
EMTI� �2u3

�x1
2 �2

dx1 =
1

4
EMTIk4A2 �8�

The energy per unit wavelength due to axial strain is given by

Ua =
1

2
N11�11 =

1

2
EMTS�1

4
A2k2 −

P

EMTS
�2

�9�

3 Microtubule Buckling on Viscous Cytoplasm
We first model the surrounding cytoplasm as a three-

dimensional viscous flow since the major element of cytoplasm,
cytosol, typically consists of fluid. Cytoplasmic streaming is such
a three-dimensional viscous flow in the cells and surrounds the
cytoskeleton �17�. The viscous cytoplasm is assumed to be incom-
pressible, i.e.,

� · u̇ = 0 �10�

where u̇ is the velocity, i.e., u̇=du /dt; t is the time. Some bio-
logical experiments have shown that upon forces �e.g., centrifugal
forces�, the cytoplasmic streaming becomes steady on the time
scale of minutes �e.g., Refs. �18,19��. Moreover, the biological
study used measured values to estimate the Reynolds number and
found that the Reynolds number Re is very low for cytoplasmic
streaming, for instance, Re	10−3, as reported by Pickard �20�.
With the conditions of steady state and low Reynolds number of
cytoplasmic streaming that surrounds the cytoskeleton, we model
the viscous cytoplasm as Stokes flow that is characterized by
Stokes equation

− �P + 
�2u̇ = 0 �11�

where P is the pressure and h is the dynamic viscosity of cyto-
plasm. A vertical traction −T3=� cos�kx1� �where T3 is given in
Eq. �6�� is applied over the area ��x2��R ,x3=0� where the micro-
tubule contacts with the viscous cytoplasm. The traction −T3 is
assumed to be uniform over the diameter of the microtubule �but
periodic in the x1 direction�, which gives the following stress trac-
tion in the x3 direction within the three-dimensional viscous cyto-
plasm:

N33 = −
T3

2R
=

�

2R
cos�kx1� �12�

over the diameter �2R= �Di+Do� /2� of the microtubules �Fig. 3�.
Instead of solving this three-dimensional Stokes equation with

stress traction N33 as a boundary condition for the area ��x2�
�R ,x3=0� and traction free for the other areas, we use the solu-
tion of flow due to a point force. We now consider the flow due to
a unit point force at a point of x0= �x1

0 ,x2
0 ,0� within the three-

dimensional viscous cytoplasm. The Stokes equation with a sin-
gular point force term is then given by

− �P + 
�2u̇ + e3��x − x0� = 0 �13�

where e3 is the unit vector in the x3 direction and � is the Dirac
delta function. Using the Stokes stream function method, the flow
due to a point force can be resolved and the details were given by
Pozrikidis �21�. The vertical velocity u̇3 at a point x= �x1 ,x2 ,0� is

given by 1 /8�
��x1−x1
0�2+ �x2−x2

0�2. Then for the distributed
stress traction N33 given by Eq. �12�, the vertical velocity u̇3 at a
point x= �x1 ,x2 ,0� is the integration over the area covered by
microtubule,

u̇3�x1,x2,0� =

−R

R 

−


� cos�kx1

0�
2R

1

8�


�
1

��x1 − x1
0�2 + �x2 − x2

0�2
dx1

0dx2
0

=

−R

R
� cos�kx1�

8�R

Y0�k�x2

0 − x2��dx2
0 �14�

where Y0 is the modified Bessel function of the second kind �22�.
Since the diameter of microtubules R�=12.5 nm� is much smaller
than the observed buckling wavelength ��=3 �m�, then k�x2

0−x2�
�2kR=4�R /��1. The velocity in Eq. �14� then can be approxi-
mately expressed as

u̇3�x1,x2,0� =

−R

R
� cos�kx1�

8�R

�ln

k�x2
0 − x2�
2

+ ��dx2
0

=
� cos�kx1�

8�R

2R�1 − �� + 2R ln 2 − �R + x2�ln�k�R

+ x2�� − �R − x2�ln�k�R − x2��� �15�

where

� = lim
n→

��
i=1

n
1

i
− ln�n�� = 0.577

is Euler’s constant.
The viscous cytoplasm and the buckled microtubule are

coupled through the continuity condition across the microtubule/
cytoplasm interface. Specifically, the vertical velocity u̇3 of the
viscous cytoplasm in Eq. �15� is continuous with the vertical ve-
locity of the microtubule resulted from the displacement in Eq. �4�
at the interface. We realize that the vertical velocity in Eq. �15�
also depends on the x2 direction so that this continuity is on the
average sense, i.e., the average vertical velocity of the viscous
cytoplasm over the diameter of the microtubule

u̇3
avg�x1� =

1

2R
−R

R

u̇3�x1,x2,0�dx2 =
� cos�kx1�

8�

�3 − 2� − 2 ln�kR��

�16�

is the same as the vertical velocity of the microtubule from the
displacement in Eq. �4�. Thus the continuity condition is

dA

dt
=

�

8�

�3 − 2� − 2 ln�kR�� �17�

We consider that the microtubule buckling originated from the
accumulation of small fluctuations, which consists of many small
perturbation components with each component expressed as a
sinusoidal form as in Eq. �4�. For small perturbation with vertical
displacement A, � in Eq. �7� is linearized by keeping the first-
order terms of A,
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� = EMTI� P

EMTI
− k2�k2A �18�

The linear ordinary differential equation for small perturbation A
then becomes

dA

dt
=

EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2A �19�

Let A0=A�t=0� be the initial amplitude, the evolution of the ver-
tical displacement is

A�t� = A0 exp�EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2t�

= A0eGRviscoust �20�
where

GRviscous =
EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2 �21�

denotes the growth rate of the initial perturbation.
Figure 4 shows GRviscous versus wavelength for fixed bending

rigidity EMTI=2�10−23 N m2 �10� and various axial compressive
force P and viscosity 
. Figure 4�a� gives the growth rate
GRviscous and wavelength relationship for small compressive force

�P=0.3 pN� and low viscosity 
=1.5�10−3–7.5�10−3 Pa s to
model the fluid-phase cytosol that is only several times as viscous
as water �e.g., Refs. �23–25��. When GRviscous�0 for certain
wavelengths, the initial fluctuations characterized by these wave-
lengths grow in an exponential law �Eq. �20��, while when
GRviscous	0 for some wavelengths, the initial fluctuations associ-
ated with these wavelengths decay and the microtubules remain
straight. The critical condition GRviscous=0 gives the critical
wavelength

�viscous
c = 2��EMTI

P
�22�

The critical wavelength �viscous
c does not depend on viscosity 


and is 51.3 �m, shown in Fig. 4�a�. The initial fluctuations with
wavelengths greater than �viscous

c will grow; however, the fluctua-
tions with wavelengths smaller than �viscous

c will decay. Equation
�22� also indicates that no matter how small the force is, there
exists a critical wavelength �viscous

c to ensure growth from initial
fluctuations. In other words, dynamic growth is guaranteed to oc-
cur in viscous cytoplasm.

It is also noticed that the critical wavelength �viscous
c is identical

to the critical length for Euler buckling, which suggests that a very
small axial compressive force �on the order of 1 pN depending on
the microtubule length� may lead to microtubule buckling with a
large wavelength. However, the buckling of microtubules on vis-
cous cytoplasm due to a small compressive force does not indicate
that the microtubules cannot bear a compressive force. The
growth or decay in this section is just the initial stage, while the
compressive force that microtubule can sustain is determined by
final equilibrium stage as to be discussed in Sec. 4.

Each curve in Fig. 4�a� has a maximum �marked by � in Fig.
4�a��, which denotes the fastest growth rate. The corresponding
fastest growth wavelength is determined by �GRviscous /�k=0,

� = 2��EMTI

2P

5 − 4� − 4 ln�2�R/��
1 − � − ln�2�R/��

�23�

Numerical results show that 5−4�−4 ln�2�R /�� /1−�
−ln�2�R /���4 for all wavelengths, such that

�viscous
fastest growth � 2��2EMTI

P
�24�

Equation �24� clearly shows that the fastest growth wavelength is
independent of viscous cytoplasm, while the corresponding fastest
growth rate is inversely proportional to the viscosity. More impor-
tantly, the fastest growth rate is about 1 /s, which suggests that the
growth of initial fluctuation is on the order of seconds. This time
scale agrees well with in vivo experiments of Brangwynne et al.
�13�.

Corresponding to the force generated by optical and magnetic
tweezers, the growth rate GRviscous and wavelength relationship
for cells due to a large compressive force �P=70 pN� and moder-
ate viscosity �
=5–9 Pa s �25�� are shown in Fig. 4�b�. Similar
curves are shown and the critical and fastest growth wavelengths
are 3.3 �m and 4.8 �m, respectively.

The study for viscous cytoplasm shows the following.

�1� Any small fluctuations that have wavelength greater than
critical wavelength �Eq. �22�� will grow no matter how
small the compressive force P is.

�2� Cytoplasm viscosity only affects the growth rate; the
smaller the viscosity, the larger the growth rate; cytoplasm
viscosity cannot determine the occurrence of the growth.

�3� Critical wavelength and fastest growth wavelength do not
depend on viscosity.

�4� The compressive force that a microtubule can sustain be-
fore buckling is very small if the surrounding is a viscous
cytoplasm.
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Fig. 4 The relationship of growth rate and wavelength for vis-
cous cytoplasm. „a… Growth rate versus wavelength for small
axial compressive force and „b… growth rate versus wavelength
for large axial compressive force.
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It should be pointed out that the steadiness of cytoplasmic
streaming and small perturbation �Eq. �20�� are two distinct con-
cepts. The former indicates that the cytoplasmic streaming is
steady upon external force/stress. While the latter, the small per-
turbation, evolves to respond to the steady cytoplasmic streaming,
which is not steady, as shown in Eq. �20�.

4 Microtubule Buckling on Elastic Cytoplasm
The elasticity of the cytoplasm originated from the cytoskeleton

�26�. The elastic cytoplasm stores the deformation energy to sta-
bilize the microtubules/cytoplasm system such that the equilib-
rium configuration �e.g., equilibrium wavelength� is determined
by the energetics of the system. In this section, we study the final
equilibrium stage by modeling the cytoplasm as a three-
dimensional linearly elastic solid in this section. The shear modu-
lus �e is used to characterize the incompressible elastic cyto-
plasm. The energetically favorable buckling pattern is determined
using the energy method.

The three-dimensional elastic cytoplasm is subject to vertical
traction −T3 �where T3 is given in Eq. �6�� within the area ��x2�
�R ,x3=0�. The normal traction −T3 is assumed to be uniform
over the microtubule diameter 2R, which gives the nonvanishing
stress traction in the x3 direction N33=−T3 /2R=� cos�kx1� /2R the
same as Eq. �12� in viscous analysis.

Based on Gaussian’s divergence theorem, the strain energy per
unit wavelength in the elastic cytoplasm is

Us =
k

2�
·

1

2

V

�:�dV =
k

4�



S�

N33u3
cytoplasmdS

=
k

4�



−R

R 

0

2�/k

N33u3
cytoplasmdx1dx2 �25�

where S� is the area ��x2��R ,x3=0� where the microtubule con-
tacts with the cytoplasm and u3

cytoplasm is the displacement on the
area S�, which is obtained analytically from Kelvin’s solution
�27�.

For a unit normal point force at x0= �x1
0 ,x2

0 ,0� within a three-
dimensional infinite elastic solid, Kelvin’s solution gives the ver-
tical displacement at the point x= �x1 ,x2 ,0� as

�1 /8��e�1 /��x1−x1
0�2+ �x2−x2

0�2. For the distributed load N33,
the displacement at point x= �x1 ,x2 ,0� for elastic cytoplasm is the
integration over the entire microtubule diameter 2R,

u3
cytoplasm�x1,x2,0� =


−R

R 

−


� cos�kx1

0�
16�R�e

�
1

��x1 − x1
0�2 + �x2 − x2

0�2
dx1

0dx2
0

=
� cos�kx1�

8�R�e
2R�1 − �� + 2R ln 2

− �R + x2�ln�k�R + x2�� − �R − x2�ln�k�R − x2���
�26�

where the condition R /��1 has been used. Because the
microtubule/elastic cytoplasm interface is replaced by the normal
traction in Eq. �6�, the above displacement for the elastic cyto-
plasm is continuous with the displacement in Eq. �4� for the buck-
led microtubule only on the average sense.

The strain energy in the elastic cytoplasm is then obtained from
Eqs. �25� and �26� as

Us =
k

4�



x2=−R

R 

x1=0

2�/k
�

2R
cos�kx1�

� cos�kx1�
8�R�e

2R�1 − �� + 2R ln 2

− �R + x2�ln�k�R + x2�� − �R − x2�ln�k�R − x2���dx1dx2

=
�2

32��e
�3 − 2� − 2 ln�kR�� �27�

The total potential energy �tot of the system is the sum of
bending energy �Eq. �8�� and axial strain energy �Eq. �9�� in the
microtubule and the strain energy in the elastic cytoplasm �Eq.
�27��. However, for the microtubule vertical displacement in Eq.
�4� and the cytoplasm vertical displacement in Eq. �26�, which are
not continuous, the potential energy becomes

�tot = Ub + Um + Us −

S�

��u3 − u3
cytoplasm�dS �28�

where � is the Lagrange multiplier. The variation of the above
potential energy with respect to � requires u3=u3

cytoplasm and the
variation with respect to the displacement u3 or u3

cytoplasm gives �
to be the traction T3 �Eq. �6�� at the interface. In the following the
Lagrange multiplier � is replaced by the traction T3 in Eq. �6�.
The potential energy is then obtained as

�tot =
1

2
EMTS�1

4
A2k2 −

P

EMTS
�2

+
1

4
EMTIk4A2 +

1

2
�A −

�2

32��e
�3

− 2� − 2 ln�kR�� �29�

which depends on buckling amplitude A and wavelength �
=2� /k.

The minimization of potential energy �tot in Eq. �29� with re-
spect to the buckling amplitude A, ��tot /�A=0, gives

A = �2

k
�P − Pelastic

c

EMTS
, P � Pelastic

c

0, P 	 Pelastic
c � �30�

where

Pelastic
c =

8��e

k2

1

3 − 2� − 2 ln�kR�
+ EMTIk2 �31�

is the critical compressive force for buckling. Equation �30� sug-
gests that the buckling occurs only when the compressive force P
reaches a critical force Pelastic

c given by Eq. �31�, in which the
wave number k is to be determined.

The minimization of potential energy with respect to the wave
number, ��tot /�k=0, gives the following nonlinear equation for k:

k�EMTI

�e
�1/4

= �16��1 − � − ln�kR��
�3 − 2� − 2 ln�kR��2�1/4

�32�

For reported microtubule bending rigidity EMTI=2�10−23 N m2

�10� and the wide range of shear modulus of the surrounding �e
=1−1000 Pa �28�, the numerical results show that

kelastic
c �

5

4
� �e

EMTI
�1/4

�33�

or equivalently,

�elastic
c =

8�

5
�EMTI

�e
�1/4

�34�

At this critical wavelength, the amplitude A is

A =
8

5
�EMTI

�e
�1/4�P − Pelastic

c

EMTS
�35�

and the critical force Pelastic
c is
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Pelastic
c =

25

16
�EMTI�e�1 +

2048�

625�3 − 2� − 2 ln�2�R/�elastic
c ���

�36�
The buckling wavelength given by Eq. �34� is independent of

axial compressive force P and solely determined by the ratio of
shear modulus of the elastic cytoplasm and the bending rigidity of
microtubules. Therefore, the buckling wavelength is an intrinsic
property of microtubules/elastic cytoplasm systems and com-
pletely determined by their mechanical properties. Since the re-
ported shear modulus �e of cytoplasm has extremely large scat-
tering, ranging from 0.1 Pa to 1000 Pa �28�, the buckling
wavelength also exhibits large scattering. The smallest wave-
length is about 1.9 �m while the largest wavelength is 19 �m. If
a median value of �e=200 Pa is used, the present analysis gives
2.8 �m wavelength, which agrees very well with experiments of
Brangwynne et al. �13�.

The critical axial compressive force Pelastic
c to buckle microtu-

bules �Eq. �36�� depends on both the bending rigidity of microtu-
bules and the shear modulus of the cytoplasm. Therefore, the
compressive force that an individual microtubule can bear de-
pends on both the bending rigidity of microtubules and the shear
modulus of cytoplasm as well. Figure 5 shows the relationship
between the compressive force P that an individual microtubule
sustains before buckling and the shear modulus of cytoplasm for a
given bending rigidity of microtubules as EMTI=2�10−23 N m2

�10�. The results show that the compressive force is on the order
of 100 pN, except when the shear modulus is less than 20 Pa. This
study clearly indicates that the ability of a cell to bear compres-
sive force depends on both microtubules and cytoplasm: The rela-
tively stiff microtubules are combined with the compliant cyto-
plasm to sustain the compressive force.

The main findings for microtubule buckling on elastic cyto-
plasm are the following.

�1� The buckling wavelength does not depend on the axial
force P but on the ratio of shear modulus of the elastic
cytoplasm and bending rigidity of the microtubules.

�2� The compressive force is on the order of 100 pN for most
cytoplasm with a shear modulus larger than 20 Pa.

�3� The ability to sustain compressive force is governed by
both stiff microtubules and compliant cytoplasm.

5 Microtubule Buckling on Viscoelastic Cytoplasm
In this section, we study microtubule buckling supported by the

viscoelastic cytoplasm. Cytoplasm exhibits both viscosity from
fluid and elasticity from solid cytoskeleton networks, which has
been shown in various experiments �29�.

The surrounding cytoplasm that consists of fluid and cytoskel-
eton is modeled as an isotropic linearly viscoelastic material. The
stress-strain relation is described in an integral form �30�

��t� = 2

−

t

��t − ��
�����

��
d� + �


−

t

��t − ��
���:��

��
d� �37�

where t is the time, ��t� and ��t� are time-dependent relaxation
moduli, and � is the second-order identity tensor. The equilibrium
equation without body force and inertia term is � ·�=0. The
strain-displacement relation is linear, i.e., �= ��u+u� � /2. Within
the three-dimensional viscoelastic cytoplasm, only the area ��x2�
�R ,x3=0� that contacts with the buckled microtubule has pre-
scribed traction −T3=� cos�kx1�, where T3 is given in Eq. �6�. We
also assume that the traction −T3 is uniformly distributed over the
diameter of microtubules, i.e., N33=−T3 /2R=� cos�kx1� /2R �Fig.
3�. A boundary value problem for viscoelastic cytoplasm is then
established.

This viscoelastic problem can be solved by the elastic-
viscoelastic correspondence principle �30�. The stress-strain rela-
tionship is given by Laplace transform of Eq. �37�,

�̄�s� = 2s�̄�s��̄�s� + s�̄�s���̄�s�:��� �38�
where a bar over a variable denotes its Laplace transformed form
and s is the transform variable. The nonvanishing stress traction in
Laplace transformed form is

N̄33 =
�̄ cos�kx1�

2R
, �x2� � R,x3 = 0 �39�

Equations �38� and �39� are identical to that of linear elasticity
if the transform of viscoelastic variables �e.g., �̄�s� and �̄�s�� are
associated with the corresponding elastic variables �e.g., � and ��
and the transformed moduli �e.g., s�̄�s� and s�̄�s�� are associated
with elastic moduli �e and �e. Thus the solution of the Laplace
transformed viscoelastic problem can be directly obtained from
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microtubule bears before buckling and the shear modulus of the elastic
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the solution of the corresponding elastic problem by replacing �e

and �e with s�̄�s� and s�̄�s�. The corresponding elastic problem
for Eqs. �38� and �39� has been resolved in Sec. 4 using Kelvin’s
solution �27�. Then the displacement at point x= �x1 ,x2 ,0� due to
a distributed load �Eq. �39�� in viscoelastic cytoplasm is obtained
from the corresponding elastic solution given by Eq. �26�,

ū3�x1,x2,0,s� =

−R

R 

−


�̄ cos�kx1

0�
16�Rs�̄�s�

1

��x1 − x1
0�2 + �x2 − x2

0�2
dx1

0dx2
0

=
�̄ cos�kx1�
8�Rs�̄�s�

2R�1 − �� + 2R ln 2 − �R + x2�ln�k�R

+ x2�� − �R − x2�ln�k�R − x2��� �40�
The viscoelasticity of cytoplasm is specifically modeled as a

Kelvin model �30�, i.e., the viscoelastic system is modeled as a
spring and a dashpot in parallel, and the shear relaxation modulus
is

��t� = �e + 
��t� �41�

where �e is the stiffness of the spring and 
 is the viscosity of the
dashpot. The spring is used to model the elastic cytoskeleton such
that �e is the shear modulus in Sec. 4. The dashpot models the
viscous fluid and therefore 
 is the viscosity in Sec. 3. Here the
viscoelasticity analysis involves both elasticity through shear
modulus �e and viscosity 
, and therefore exhibits profound ef-
fects on the microtubule buckling, as shown in the following.The
Laplace transform of the shear relaxation modulus is

�̄�s� =
�e

s
+ 
 �42�

Substitute Eq. �42� into Eq. �40� and the inverse Laplace trans-
form gives

u̇3�x1,x2,0� = −
�e



u3 +

� cos�kx1�
8�R


2R�1 − �� + 2R ln 2 − �R

+ x2�ln�k�R + x2�� − �R − x2�ln�k�R − x2��� �43�
Similar to viscous analysis in Sec. 3, the viscoelastic cytoplasm

is coupled with the buckled microtubule via the stress and velocity
continuity condition across the interface. To be specific, the ver-
tical velocity of the viscoelastic cytoplasm at the microtubule/
cytoplasm interface �Eq. �43�� is continuous with the microtubule
velocity derived from Eq. �4� on the average sense, i.e., the aver-
age velocity of the viscoelastic cytoplasm over the microtubule
diameter 2R,

u̇3
avg�x1� =

1

2R
−R

R

u̇3�x1,x2,0�dx2 = −
�e



u3 +

� cos�kx1�
8�


�3 − 2�

− 2 ln�kR�� �44�
is the same as the microtubule velocity given by Eq. �4�. Thus the
continuity condition is

dA

dt
= −

�e



A +

�

8�

�3 − 2� − 2 ln�kR�� �45�

Here we only consider the initial growth of buckling from the
small perturbation of A in Eq. �4� such that � is linearized �the
same as Eq. �18��, and the linear ordinary differential equation for
small perturbation A becomes

dA

dt
= �−

�e



+

EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2�A

�46�

Compared with the differential equation of A in viscous analysis
�Eq. �19��, �e /
 comes into play in viscoelastic analysis. �e /

=0 corresponds to viscous cytosol presented in Sec. 3, while

�e /
→ denotes that the elasticity prevails in the viscoelastic
cytoplasm. Let the initial amplitude be A0, the evolution of the
amplitude is

A = A0 exp��−
�e



+

EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2�t�

= A0eGRviscoelastict �47�

where

GRviscoelastic = −
�e



+

EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2

�48�

is the growth rate for viscoelastic cytoplasm.
The stability of the perturbed microtubules depends on the sign

of the growth rate GRviscoelastic. When GRviscoelastic�0 for some
wavelengths, the initial fluctuations associated with these wave-
lengths grow in an exponential law with growth rate GRviscoelastic.
While when GRviscoelastic	0 for some wavelengths, the initial
fluctuations characterized by these wavelengths decay and the mi-
crotubules are stable. The critical condition is GRviscoelastic=0. The
three stages of evolution of perturbed microtubules are shown in
Fig. 6. The parameters used in Fig. 6 are bending rigidity EMTI
=2�10−23 N m2 �10�, P=40 pN, viscosity 
=10 Pa s, and shear
modulus �e=0−8.5 Pa. Compared with Fig. 4 for viscous cyto-
plasm, the introduction of shear modulus has important effects.

With the increase in shear modulus �e from 0 �corresponding to
viscous case� to finite value, the viscoelastic cytoplasm becomes
more “elastic” and all of the curves shift downward but do not
change shape, which leads to an increase in the critical wave-
length. For example, the critical wavelength for �e=2 Pa is
4.6 �m, while it is 4.9 �m for �e=4 Pa. The fastest growth
wavelength is determined by �GRviscoelastic /�k=0,

� = 2��EMTI

P

5 − 4� − 4 ln�2�R/��
3 − 2� − 2 ln�2�R/���1/2

�49�

with an approximated expression as

�viscoelastic
fastest growth � 2��2EMTI

P
�50�

which is independent of shear modulus �e and the same as that for
viscous analysis given by Eq. �24�. Equation �50� suggests that
once the dynamic growth occurs, the fastest growth wavelength is
completely determined by the axial compressive force P and the
bending rigidity EMTI of microtubules but does not depend on the
properties of the cytoplasm �elasticity �e and viscosity 
�.
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Fig. 6 The relationship of growth rate and wavelength for vis-
coelastic cytoplasm with different shear moduli
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If shear modulus further increases, e.g., �e=8.5 Pa in Fig. 6,
the growth rate GRviscoelastic	0 for all wavelengths. This suggests
that the buckling is suppressed by the viscoelastic cytoplasm. The
critical shear modulus �e

c is determined by setting GRviscoelastic
=0 and ��e

c /�k=0, which gives

�e
c =

P2

32�EMTI
�3 − 2� − 2 ln�� P

2EI
R�� �51�

For a given axial force P, cytoplasm with shear modulus larger
than �e

c prevents the growth for all wavelengths. The elasticity of
the cytoplasm allows the system the ability to block microtubule
buckling, while the viscosity of the cytoplasm does not block
microtubule buckling and only affects the growth rate. In Fig. 6,
the growth rate GRviscoelastic is about 1 /s, which suggests that if
buckling process occurs, it occurs on the order of seconds.

Figure 7 shows the growth rate curve for different axial force P
with shear modulus �e=200 Pa and viscosity 
=10 Pa s. The
critical wavelength and fastest growth wavelength increase with
the decrease in the axial force P. When P=212 pN, the growth
rate is zero, which gives a critical axial compressive force
Pviscoelastic

c . If the axial compressive force is less than Pviscoelastic
c ,

the initial perturbation will decay and the microtubule buckling
does not occur. The critical force Pviscoelastic

c is obtained by solving
GRviscoelastic=0 and �Pviscoelastic

c /�k=0,

Pviscoelastic
c =

25

16
�EMTI�e�1 +

2048�

625�3 − 2� − 2 ln�kR��� �52�

and the corresponding critical wavelength is

�viscoelastic
c =

8�

5
�EMTI

�e
�1/4

�53�

The critical force and wavelength are identical to that for the
elastic cytoplasm, which indicates that the threshold for microtu-
bule buckling is completely governed by cytoplasm elasticity.
Therefore, the discussion of the compressive force that an indi-
vidual microtubule can bear in the elastic analysis also holds here.

6 Discussion and Concluding Remarks
In this study, mechanics models for the analysis of microtubule

buckling supported by cytoplasm have been reported. The micro-
tubule is modeled as a linearly elastic cylindrical tube while the
cytoplasm is characterized by viscous, elastic, or viscoelastic ma-
terial. The microtubule is coupled with the cytoplasm through
interface continuity conditions. The dynamic evolution equations,
fastest growth rate, critical wavelength, and critical compressive
force, as well as equilibrium buckling configurations are obtained.

To understand the process completely, one must not only con-
sider the energy of deformed configuration but also the dynamics.
The dynamic effect is due to the cytoplasm viscosity that affects
the growth rate, while the energetic process is governed by the
cytoplasm elasticity that determines the occurrence of buckling.
Once the buckling occurs, the final equilibrium configuration is
completely determined by the elasticity. These processes, namely,
dynamic growth and elastic equilibrium, are similar for the bilayer
structures that have been studied previously �31–37�. The ability
of a cell to sustain compressive force is not solely determined by
microtubules but also the elasticity of cytoplasm. With the support
of the cytoplasm, an individual microtubule can sustain a com-
pressive force on the order of 100 pN. The relatively stiff micro-
tubules and compliant cytoplasm are combined to provide a scaf-
fold for compressive force.

In addition to the mechanics explanation of microtubule buck-
ling supported by cytoplasm, the findings in this study can be
influential due to the concise analytical description of the critical
force and wavelength. For example, since the bending rigidity of
microtubules is well accepted on the range of 0.4�10−23–4
�10−23 N m2, the expression for critical wavelength provides a
means to measure the shear modulus of cytoplasm that is closely
related to many diseases, such as cancer �38�.

There exists some related works. For example, Liu et al. �39�
studied the buckling of a microtubule bundle in tubulin solution.
They observed a short-wavelength buckling pattern and obtained a
power law for buckling wavelength ��R�EMT /�e�1/4, which is
the same as the current analysis. Im and Huang �36� showed the
similar relation between buckling wavelength and ratio of thin
film and substrate for thin film buckling on an elastic-viscoelastic
bilayer. A recent work by Das et al. �40� studied the mechanism of
microtubule buckling in cells. Similar relations between buckling
profiles and substrate modulus were obtained. The main difference
is that the current analysis has a more quantitative mechanics
analysis.
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Influence of Road Camber on
Motorcycle Stability
This paper studies the influence of road camber on the stability of single-track road
vehicles. Road camber changes the magnitude and direction of the tire force and moment
vectors relative to the wheels, as well as the combined-force limit one might obtain from
the road tires. Camber-induced changes in the tire force and moment systems have
knock-on consequences for the vehicle’s stability. The study makes use of computer simu-
lations that exploit a high-fidelity motorcycle model whose parameter set is based on a
Suzuki GSX-R1000 sports machine. In order to study camber-induced stability trends for
a range of machine speeds and roll angles, we study the machine dynamics as the vehicle
travels over the surface of a right circular cone. Conical road surfaces allow the machine
to operate at a constant steady-state speed, a constant roll angle, and a constant road
camber angle. The local road-tire contact behavior is analyzed by approximating the
cone surface by moving tangent planes located under the road wheels. There is novelty in
the way in which adaptive controllers are used to center the vehicle’s trajectory on a
cone, which has its apex at the origin of the inertial reference frame. The results show
that at low speed both the weave- and wobble-mode stabilities are at a maximum when
the machine is perpendicular to the road surface. This trend is reversed at high speed,
since the weave- and wobble-mode dampings are minimized by running conditions in
which the wheels are orthogonal to the road. As a result, positive camber, which is often
introduced by road builders to aid drainage and enhance the friction limit of four-
wheeled vehicle tires, might be detrimental to the stability of two-wheeled machines.
�DOI: 10.1115/1.2937140�

1 Introduction
The role of road camber on the stability of motorcycles is an

issue that arises in the context of loss-of-control accident investi-
gations when high-speed cornering is involved. Superelevated
roads are commonplace, and their banking is designed primarily
to assist drainage and to improve the tire adhesion limit of four-
wheeled vehicles. In the context of training, advanced police mo-
torcycle riders are taught about the influence of road camber on
tire adhesion using simple static-equilibrium-based ideas �1�.
They are taught that superevaluated cross fall has a favorable
influence on the vehicle’s behavior, because it makes the road
wheels more nearly vertical relative to the road. The teaching in
Ref. �1� does not extend to the role of camber on machine stabil-
ity, because this is a considerably more complex issue.

Our aim is to investigate the influence of road camber on the
primary oscillatory modes of motorcycles. Insight is obtained
from a high-fidelity computer model that has been developed for
this purpose. In “flat-road” models the tires’ normal load is paral-
lel with the earth’s gravitational field, while the tires’ lateral and
longitudinal forces are orthogonal to it. Similarly, the tires’ align-
ing moment is in the direction of gravity, while the overturning
and rolling resistance moments lie in a horizontal ground plane. In
the case of cambered roads, the tires’ normal load is no longer
parallel to gravity, and the roadway is no longer horizontal or flat.
The model presented here studies the consequences of these
changes in detail.

The earliest dynamic models for two-wheeled vehicles go back
over a century and were developed in the context of the bicycle.
In the same way, early research on motorcycle dynamics was con-
fined to small perturbations from straight running and relatively
simple vehicle models. References �2,3� provide a comprehensive

review of much of this early literature. Simple models with rigid-
body type frame representations, and constraint-based tire repre-
sentations predict a single oscillatory mode known as “weave.”
Following the introduction of frame flexibility, and/or force gen-
erating tire models, a second oscillatory mode is predicted, which
is known as “wobble.” In the case that one or more of these modes
is stable, but lightly damped, the potential exists for undesirable
vehicle behavior. In later work, these models were extended to
include small perturbations from a steady-state cornering condi-
tion �4–9�. It is clear from these studies that under certain operat-
ing conditions some of the machine’s modes can be lightly
damped, or even unstable. This theoretical work has been supple-
mented by extensive measurement programs �10–24�.

The weave mode combines rolling, yawing, and steering in a
fish-tailing motion and is well damped at moderate speeds, but
becomes less so as the machine’s forward speed increases. The
natural frequency of this mode rises from zero at very low speed
to somewhere in the range of 2–4 Hz, depending on the mass and
size of the machine; the lower frequencies correspond to heavier
motorcycles. The wobble mode involves primarily a caster
shimmy type steering oscillation, and has an oscillatory frequency
that is essentially independent of speed and is normally in the
6–9 Hz range, the precise frequency being governed primarily by
the mechanical trail, the front tire cornering stiffness, and the front
frame steer inertia �25�. Computer simulation studies indicate that
the torsional stiffness of the motorcycle frame at the steering head
determines whether a machine will be prone to wobbling at me-
dium speeds �a compliant frame� or at high speeds �a stiff frame�
�26,27�. In cornering, the lateral �out-of-plane� modes and the
in-plane modes associated with tire deflections and suspension
motions become coupled, as was first shown in any detail by
Koenen �4�. The motorcycle becomes prone to resonant forcing,
which is induced by regular road undulations, when the displace-
ment forcing they produce is tuned to the lightly damped modes
of the machine. Moderate roll angles and high speeds are likely to
represent the worst case conditions �28�.

This paper is organized as follows. Section 2 describes the
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background to the motorcycle model that will be used in this
study. Some of the important characteristics of the standard prior-
art motorcycle-rider system are described in Sec. 2.1. The model-
ing of cambered roads is described in Sec. 2.2, where the compu-
tation of road normals and tangent planes is described. The
standard motorcycle model control systems are extended in Sec.
2.3, where a new adaptive roll-angle control system is introduced.
A single-wheel model that is used to study roll-angle equilibria
and tire adhesion limits is introduced in Sec. 2.4 and analyzed in
Sec. 2.5. This model is based on a “thick tire” and is used to study
force and moment balances as well as certain aspects of the road-
tire contact geometry. The machine’s static stability limits are
studied in Sec. 2.6. The influence of road camber on a high-
fidelity motorcycle model is analyzed in Sec. 3 with the conclu-
sions drawn in Sec. 4.

2 Motorcycle Model

2.1 Prior Model. The motorcycle model used in this study is
representative of modern road-going sports machines, and has a
parameter set that is based on the Suzuki GSX-R1000. The ma-
chine geometry is shown in Fig. 1, in which the motorcycle’s
seven constituent masses are represented by �dark� circles that
have a diameter that is proportional to the mass of the associated
body. All the critical points �mass centers, linkage pivot points,
and so on� are individually marked. The main frame is allowed
unrestricted translational and rotational motions. The swinging
arm, the monoshock linkage system, the rider, and front frame are
all pinned to it. The �rear� monoshock suspension is restrained by
a parallel spring and damper, while the front suspension is based
on a standard telescopic fork that allows linear in-line displace-
ments. The main frame is modeled as a single rigid body save for
a torsional frame flexibility degree of freedom at the steering
head—this freedom accommodates small angular displacements
that are perpendicular to the steering axis. Aerodynamic influ-
ences are modeled using drag and lift forces, which are propor-
tional to the square of the speed. The road tires are treated as
“wide,” flexible in compression, and care is taken to track dy-
namically the migration of both ground-contact points as the ma-
chine rolls, pitches, and steers. Both contact points, which are
taken as the points closest to the road surface, will move laterally

and circumferentially over the tires’ surface; these points represent
the center of the road-tire contact patch. The tire forces and mo-
ments are generated from the normal load, the tires’ camber angle
relative to the road, and the combined slip using “magic formalas”
�29–32�. The lateral compliance of the tires’ carcass is modeled
using standard linear time-varying relaxation length type tire mod-
els �31�. Relaxation effects have a lagging influence on the gen-
eration of the lateral forces and aligning moments.

The machine’s trim state is controlled using feedback loops,
which control the steering torque and the drive to the rear wheel.
The drive moment is controlled using a proportional-integral con-
troller that acts on a speed error; this allows the vehicle to follow
an arbitrary speed reference. The steering controller is propor-
tional integral derivative in its general structure, and acts on a
roll-angle error. The steering controller allows the vehicle to
maintain a fixed roll angle, or follow a low-bandwidth roll-angle
reference signal. A motorcycle model incorporating all of the
above features has its origins in Ref. �5�, and is extended in Refs.
�8,9�. The model is written in LISP and makes use of the multi-
body modeling code AUTOSIM �33� and can be obtained from the
website.2 The Autosim model can be configured to solve the non-
linear equations of motion, or it can be used to generate a sym-
bolic state-space representation that describes small perturbation
around a prescribed trim condition. For the purposes of this study,
both the tire and controller modeling had to be extended. These
extensions are described next.

2.2 Cambered Road Modeling. Suppose that the road over
which the vehicle will travel is described in Cartesian coordinates
by the differentiable road-surface function

S�x,y,z� = 0 �1�

A general point P on the road surface S is denoted S�P�, and is
described by the vector

2http://www.imperial.ac.uk/controlandpower/motorcycles/
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Fig. 1 Scaled diagrammatic side-view of the motorcycle model in its nominal
configuration. The seven constituent bodies are shown as „dark… circles, with
their radii proportional to their mass. All the points critical to building the
model are individually marked. For example, the largest mass is the rear frame
with its mass center located at p8.
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rP = xPnx + yPny + zpnz �2�

in which nx, ny, and nz are the standard basis vectors in a SAE
coordinate system. A normal to the surface at S�P� is given by
��34�, p. 285�

�SP = � �S

�x
�

P

nx + � �S

�y
�

P

ny + � �S

�z
�

P

nz �3�

A tangent plane T�P�, which contains the point S�P�, is described
by

��r − rP�,�SP� = 0 �4�

for any vector r−rP in T�P�. This follows from the fact that r
−rP must be perpendicular to any normal to the plane.

In the context of the present study, we are particularly interested
in conical road surfaces, because they allow motorcycles to oper-
ate at trim conditions that are characterized by a prescribed con-
stant speed, a constant roll angle, and a constant road camber
angle. Figure 2 illustrates such a conical road surface and is de-
scribed by

S�x,y,z� = �x2 + y2 tan � + z = 0 �5�

A unit-length normal at S�P� is given by

�SP = � x sin �

�x2 + y2�
P

nx + � y sin �

�x2 + y2�
P

ny + cos �nz �6�

If r defines a general point in T�P�, the vector �r=r−rP is or-
thogonal to �SP if it lies in T�P�. Thus, the tangent plane T�P� in
Fig. 2 is defined by

�x − xP�
xP sin �

�xP
2 + yP

2
+ �y − yP�

yP sin �

�xP
2 + yP

2
+ �z − zP�cos � = 0 �7�

for a general point �x ,y ,z��T�P�.
With these ideas in mind, the motorcycle model described in

Sec. 2.1 was modified to accommodate conical road surfaces. The
essential idea is to represent the road surface locally using tangent
planes that move under each of the road wheels. These planes are
characterized by normals computed at the nominal �associated
with the nominal configuration� ground-contact points. These
points are treated as fixed in the main frame’s body-fixed coordi-
nate system. Contact point excursions are then represented as mo-
tions over the two tangent planes, which are fully characterized by
normal vectors of the type given in Eq. �6�. In the case of flat-road
models, these normal vectors are given by the static vector nz. For
the purposes of tire force and moment calculations, it is necessary
to compute normal loads and aligning moments in the direction of
Eq. �6�. The tire camber angles are calculated relative to the
planes �7�, rather than the horizontal ground plane. The lateral and
longitudinal tire forces, as well as the overturning moment act in
the plane described by Eq. �7� rather than the ground plane. These
changes are straightforward to implement by reworking the tire
kinematics calculations described previously in Ref. �9�, for
example.

These ideas are further illustrated in Fig. 3, which show part of
a motorcycle road tire moving over an inclined road surface with
camber angle �. As before, the motorcycle’s roll angle ��� is
defined relative to the inertial nz-axis. Under these conditions, the
tire camber angle is approximately �−�, and it is this angle that
informs the magic formulas of the tires’ camber angle status, and
it is this angle that generates the tires’ camber force. The normal
load is perpendicular to the road, and the lateral force lies in the
road surface.

2.3 Adaptive Steering Controller. Another challenge facing

n0 nx

ny

nz

tangent plane T (P )
∆r

rp

road surface S

motorcycle trajectory

P

r ∇SP

θ

r⊥p
v⊥

p

Fig. 2 The road surface used for cambered road stability studies is a right circular cone „as illustrated, the
cone is inverted for positive camber angles in the range 90 deg>�Ð0…. The central axis of the cone is aligned
with the inertial axis nz, with its vertex at the origin n0 of the inertial reference system. For camber angles in the
range 90 deg>�Ð0, the motorcycle is assumed to ride on the interior surface of the cone along a circular
trajectory. Only positive yaw rate operating conditions are considered „clockwise when seen from above…,
which means that for positive roll angles the machine leans toward the central axis of the cone. The nominal
rear-wheel ground-contact point is P. The actual rear-wheel ground-contact point is assumed to move over the
tangent plane T„P…; the normal to the plane T„P… is the vector �SP. A second tangent plane is used to describe
locally the road surface under the front wheel. The vector rp

� is the projection of rp onto the ground plane, while
vp
� is the velocity of P projected onto the ground plane.
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the motorcycle modeler, in the context of cambered road studies,
is the correct positioning of the machine relative to the cone.
When seeking to achieve a fixed-speed, fixed-roll-angle, and
fixed-camber-angle trim condition, the first objective is to achieve
the desired speed and roll-angle conditions. This can be done us-
ing known methods, but the center of the circular trajectory will
be at an arbitrary location in the ground plane. The new aspect to
the vehicle control problem is to move the fixed-speed fixed-roll-
angle trajectory toward the nz axis so that it eventually rotates
around it. This problem was solved using the adaptive-reference
roll-angle feedback controller illustrated in Fig. 4. This scheme is
informed by the fact that for a steady-state circular trajectory, the
radial position vector and the corresponding velocity vector are
orthogonal to each other. Intuitively, if an origin-centered trim
trajectory is to be achieved, one should steer toward the origin if
the angle between the position vector and the velocity vector is
greater than 90 deg, and away from it if the angle is less than

90 deg. If these vectors remain orthogonal, no position-related
steering is required. These ideas are implemented in the adaptive
control system illustrated in Fig. 4, which “adapts” the roll-angle
reference to the correction term ks�rp

� ,vp
��. The gain ks is con-

stant, and �·, ·� represents the inner product between the machine’s
position and velocity vectors projected onto the ground plane.
Clearly, as the angle between rp

� and vp
� passes through 90 deg,

the sign of the inner product term changes. The stability of the
system is obviously crucial, but a formal stability analysis appears
prohibitively difficult to carry out. It turned out that this loop is
easy to tune by trial and very effective in terms of its operation.
Figure 5�a� shows the machine being moved by the adaptive ref-
erence scheme from an arbitrary ground-plane position to an
origin-centered orbital trajectory. Figure 5�b� shows the machine
operating under full feedback control as it slowly accelerates up
the conical road surface. The roll angle is maintained at a constant
reference value of �=0 deg, while its speed is increased at a
constant acceleration of 0.005 m /s2.

2.4 Single-Wheel Model. Cambered road surfaces in combi-
nation with profiled tires make the prediction of viable operating
conditions a nontrivial exercise. In order to establish if a particular
operating condition represents a potentially stable equilibrium, we
will study the conditions required for a roll-angle equilibrium as
well as the possible violation of the road-tire adhesion limits. To
do this, we will make use of the simple single-wheel model illus-
trated in Fig. 3, in which both road camber and tire profiling are
taken into account. This single-wheel model is reminiscent of the
inverted-pendulum type model described in Ref. �35�, but with the
steering locked in the straight-running position. In the context of
this model, the important parameters are the tire profile and fric-
tion limit, the location of the machine’s mass center, the road
camber angle, and the machine’s roll angle and speed. The dis-
tance lo+� is the height of the machine’s mass center above a
level road surface when it is in its nominal configuration. The
parameter � is the single-wheel tire crown radius and must be
chosen to represent both wheels. It should be emphasized that this
simple model can only be used for a restricted range of purposes,
and when such things as the wheel’s gyroscopic moments are
justifiably neglected. Care has been taken to cross check the utility
of this model with the high-fidelity model described in Sec. 2.1. In
order to compare the single-wheel abstraction with the high-
fidelity model, representative values for lo and � are required. For
present purposes, we have set � equal to the average value of the
front and rear tire crown radii: �= �0.095+0.06� /2=0.0775 m.
One can then find a value for lo from the height of the machine’s
mass center. In its nominal configuration, the height of the mass
center of the whole machine above the ground is l=0.5091 m,
which gives lo= l−�=0.4316 m. Necessary conditions for a stable
steady-state roll equilibrium are studied next.

2.5 Equilibrium Modeling. Valuable insight into the influ-
ence of road camber on the steady-state tire force and moment
system can be obtained from simple static-equilibrium based cal-
culations. These calculations also provide insight into the ma-
chine’s stable domain of operation, which is limited by its static
roll stability and the tire friction limit. The machine has a stable
trim state for only a limited range of negative roll-angle condi-
tions; we will show that the precise conditions depend on the tire’s
crown radius and the tire friction limit. We begin by referring
again to the single-wheel model illustrated in Fig. 3 and then
resolve forces in the Fy and Fz directions, respectively. This gives

Fy = M
v2

r
cos � − Mg sin � �8�

and

O

Mg

Mv2/r C

lo

θ

φ

(φ − θ)

ρ

Fy

Fz

Fig. 3 Contact between an inclined road surface and a motor-
cycle tire in a single-wheel model. The total mass of the ma-
chine and rider is M, the total weight is therefore Mg, and the
centripetal force is Mv2 /r. The tire crown radius is �, and the
distance between the motorcycle’s mass center C and the cen-
ter of the tire crown is lo. The road camber angle is �, while the
motorcycle roll angle is �; the motorcycle comes out of the
page for positive yaw rates „�̇>0…. The tire’s normal load and
side force are given by Fz and Fy, respectively, and are applied
at the contact point O. The force Fz is normal to the road sur-
face, while Fy is tangent to it.

φref(1 + ks < r⊥p ,v⊥
p >)

Σ K(s)
Ts

φ

Fig. 4 Roll-angle feedback loop used in the simulation model.
The steering torque Ts is generated from the difference be-
tween the roll angle � and the adaptive roll angle reference
�ref„1+ksŠrp

� ,vp
�
‹…; rp

� and vp
� are defined in Fig. 2. If the motor-

cycle is moving toward the inertial axis nz, the adaptive gain
term ksŠrp

� ,vp
�
‹ adjusts the roll-angle reference so as to steer

the machine away from it. Conversely, if the motorcycle is mov-
ing away from nz, the adaptive gain term ksŠrp

� ,vp
�
‹ steers the

machine toward it. The adaptive roll-angle term thus has the
effect of centering the machine trajectory on nz and becomes
noncontributory once the machine’s trajectory has been cen-
tered; in this event, Šrp

� ,vp
�
‹=0.
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Fz = − M
v2

r
sin � − Mg cos � �9�

Taking moments around the ground-contact point O gives

Mv2

r
�lo cos � + � cos �� = Mg�lo sin � + � sin �� �10�

from which it follows that machine trajectory has radius of cur-
vature

r =
v2�lo cos � + � cos ��
g�lo sin � + � sin ��

�11�

under trim conditions. Eliminating Mv2 /r from Eqs. �8� and �9�
using Eq. �11� gives

Fy =
Mglo sin�� − ��

lo cos � + � cos �
�12�

which simplifies to

Fy
thin =

Mg sin�� − ��
cos �

in the case of a “thin” tire ��=0�. In the same way,

Fz = −
Mg�lo cos�� − �� + ��

lo cos � + � cos �
�13�

or

Fz
thin = −

Mg cos�� − ��
cos �
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Fig. 5 Adaptive roll-reference controller centering the motorcycle trajectory on nz. „a… The machine trajectory begins at the
initial point „180, 150… in the ground plane, which is outside the origin-centered equilibrium circle for the motorcycle
cornering at 10 m/s with a roll angle of 15 deg; under these conditions, the equilibrium radius of curvature is 45 m. In this
simulation, the adaptive roll-angle reference gain is ks=5.0Ã10−4

„see Fig. 4…. „b… Motorcycle running on the surface of a
cone with camber angle �=5 deg. In this simulation, the machine accelerates from 5 m/s to 75 m/s at 0.005 m/s2, with the
motorcycle roll angle maintained at �=0 deg; this trajectory begins at „0,0… in the ground plane.
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Fig. 6 Approximate and exact side force and normal loads as functions of camber angle; the machine roll angle is �
=10 deg. „a… Normalized side force; the dashed curve comes from Eq. „12…, while the solid curve is computed using the
high-fidelity model at a forward speed of 10 m/s. „b… Normalized normal load; the dashed curve comes from Eq. „13…, while the
solid curve is computed using the high-fidelity model.
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in the case of a thin tire.
Figure 6�a� shows the approximate normalized tire side-force

calculated using Eq. �12� in comparison to the total normalized
tire side force computed using the high-fidelity model described in
Sec. 2.1. The agreement is very good, and as would be expected,
Fy vanishes when the motorcycle tire is perpendicular to the road.
A similar comparison appears in Fig. 6�b�, where the approximate
and exact normal loads are compared as a function of camber
angle. Again, as is expected, the normal load on the tires is at a
maximum when the camber angle is approximately �=10 deg,
with the exact figure coming from the solution to Eq. �13�. Given
the accuracy of Eqs. �12� and �13� relative to the high-fidelity
model, one would expect a similar level of veracity from Eq. �11�.
This is indeed the case as has been confirmed by computation;
confirmatory plots have not been included in order to save space.

2.6 Tire Adhesion Limits. For a stable static equilibrium, one
requires

�limit � 	Fy/Fz	 = 	lo sin�� − ��/�lo cos�� − �� + ��	

or what is equivalent

	� − �	 � arctan��limit� + arcsin
 �limit�

lo
�1 + �limit

2 � �14�

which simplifies to

	� − �	 � arctan��limit�

in the case of the thin tire. In condition �14�, �limit is the friction
limit, which faces its most demanding challenge when �−� is at a
maximum. In the case that �limit=1.6, lo=0.4316 m, and �
=0.0775 m, the friction limit requires 	�−�	�58 deg+8.8 deg
=66.8 deg; the tire profiling increases the admissible tire-road
camber angle by 8.8 deg over that achievable with an equivalent
thin tire.

If a stable equilibrium is to exist �in roll�, the following condi-
tion

lo sin � + � sin � � 0 �15�
must hold, which places another restriction on the admissible val-
ues of the machine roll and road camber angles. Condition �15�
also shows that stable cornering can be achieved, even if the ma-

chine is running with zero roll angle, providing the tire generates
an overturning moment. As is clear from Fig. 3, a thick tire will
generate an overturning moment by virtue of its geometry. There
are two roll-related stability limits illustrated in Fig. 7 that will
now be analyzed. These limits correspond to the cases in which
the denominator and numerator of Eq. �11� vanish. The required
positivity of the moment arms in Eq. �10� and the path radius of
curvature enforce Eq. �15� as a necessary condition for a stable
static roll equilibrium. In the case that the left hand side of Eq.
�15� vanishes, the machine will operate in the condition illustrated
in Fig. 7�a�, which corresponds to straight running on a static roll
stability boundary. In the case of a thin tire, which produces no
overturning moment, stable equilibria can only be supported by
non-negative roll angles. Since the moment arms in Eq. �11� rep-
resent non-negative distances, the following must hold;

lo cos � + � cos � � 0 �16�

In the limiting case that v2 /r→	, the quantity on the left hand
side of Eq. �16� tends to zero; see Eq. �11�. This leads to a second
roll-related stability limit that can only be approached asymptoti-
cally; a physical interpretation of this operating condition is illus-
trated in Fig. 7�b�. The friction limits and the two roll-related
stability limits are combined in Fig. 8 to define the machine’s
stable operating region.

The extreme “wall of death” situation is considered briefly.
When �=90 deg, Eq. �8� yields Fy =Mg so that

Fz�limit � Mg �17�

is required in order to keep the machine stable. Under these con-
ditions Fz=Mv2 /r, so that

v �� rg

�limit
�18�

is required for stable equilibrium operation. In the case that r
=10 m and �limit=1.6, the machine speed must be v�7.83 m /s.
It should be pointed out that there is nothing “special” about a
camber angle of �=90 deg, and other high camber angle condition
can be analyzed in a straightforward way. Figure 9 illustrates the
equilibrium machine roll angle as a function of v2 / �rg�. The
curves in Fig. 9�a� come from solving Eq. �10�, with the corre-

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

θ

θ

ρ

φ

lo

Mg

θ

θ

ρ

φ − 90o

lo
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Fig. 7 Roll-angle stability limits. „a… Condition „15… shows that one static roll stability
limit is reached when the machine mass center lies directly above the ground con-
tact. It follows from Eq. „11… that under these conditions the machine’s path curvature
approaches zero „r\�… for all operating points along this stability boundary. „b… The
condition lo cos �+� cos �>0 shows that a static roll stability limit is approached
when the centripetal force passes through the ground-contact point. This operating
condition can only be approached asymptotically as v2 /r\�; note that the gravita-
tional force is ignored due to its negligible influence in this case.
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sponding machine operation condition illustrated in Fig. 9�b�,
where the resultant of the gravitational and centripetal forces pass
through the tire-road contact point. Observe how higher values of
road camber angles require higher minimum values of v2 / �rg� and

lower machine roll angles that approach the boundary d� in Fig. 8
asymptotically.

3 Results
The main results of this paper are now presented and comprise

root-locus diagrams, or plots derived from eigenvalue calcula-
tions, which were generated from a symbolic linearization of the
high-fidelity model described in Sec. 2. All the results are for the
open-loop machine, and so the drive and roll controllers are re-
moved from the linearized model used to generate the results pre-
sented here. The computation of the machine’s eigenvalues is a
two-step process in which the trim states are found prior to the
evaluation of the linearized model and the eigenvalue calcula-
tions. In the first stage of the process, the controllers described in
Secs. 2.1 and 2.3 are used to drive the nonlinear model into a
desired trim condition. Once the desired trim condition has been
established, the trim states are used evaluate the state-space A
matrices of the linearized models.

The first result, shown in Fig. 10, is a set of root-locus diagrams
for the machine operating at zero roll angle. The speed is in-
creased from 5 m /s to 75 m /s, with four road camber angles con-
sidered. Since the vehicle roll angle is �=0 deg, it follows from
inequality �15� that only positive road camber angles can be con-
sidered. The zero road camber �flat road� curve is a familiar plot
that has been referred to in previous papers �8,9,36�. It can be seen
from Fig. 10 that the wobble-mode frequency varies between ap-
proximately 47 rad /s and 57 rad /s, while the weave mode reso-
nant frequency varies between 9 rad /s and 28 rad /s. Apart from
relatively low speeds �below 15 m /s�, the damping of the wobble
and weave modes decreases with increased speed. The key obser-
vation from Fig. 10 is the fact that the damping of both the wobble
and weave modes decreases with increased road camber for
speeds below 30 m /s, while at high speeds, this trend reverses
and both the wobble- and weave-mode dampings increase with
increased road camber. In order to clarify the quantitative nature
of these trends, the real parts of the wobble- and weave-mode
eigenvalues, as a function of speed, are plotted in Fig. 11. Figure
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region illustrated. This region is defined by the following: a� is
the friction limit given by �−�>−arcsin„�limit� / „lo„1+�limit

2
…

1/2
……

−arctan„�limit…, in which lo=0.4316 m, �=0.0775 m and �limit
=1.6 are used for illustration; b� is the friction limit given by �
−�<arcsin„�limit� / „lo„1+�limit

2
…

1/2
……+arctan„�limit…. The limits a�

and b� taken together come from Eq. „14…. The boundary c� is
the vertical roll stability limit given by inequality lo sin �
+� sin �Ð0, „see Fig. 7„a……; d� horizontal roll stability limit given
by inequality lo cos �+� cos �>0 „see Fig. 7„b……. Under wall of
death conditions, the road camber angle is given by �=90 deg,
and stable roll angles exist between �=23.5 deg and roll
angles approaching 90 deg.
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…

1/2
……−arctan„�limit… „boundary a� in Fig. 8…, while the limiting value associated with

v2 / „rg…\� and the corresponding highest roll angles come from the horizontal roll stability limit „boundary d�…. „b… shows the
motorcycle in roll equilibrium against the wall of death; the resultant of the gravitational and centripetal forces act through the
tire contact point O.
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11�a� shows that at low speed a road camber angle of 15 deg
increases the real part of the wobble-mode eigenvalue from ap-
proximately −5.0 to −4.3; at 15 m /s, it increases from −6.7 to
−5.7; at 30 m /s, there is virtually no change, while at 75 m /s, the
trend reverses and the real part of the wobble mode decreases
from −1.8 to −2.3 as road camber is introduced. The high-speed
trend is the most important, because at high speed the wobble-
mode damping is at its lowest, and the introduction of 15 deg of
road camber causes the wobble-mode half-amplitude decay time
to increase by almost 25% from 0.3 s to 0.38 s. Figure 11�b�
shows that at low speed a road camber increase of 15 deg has
little or no effect on the weave-mode damping; at 15 m /s, the real
part of the weave-mode eigenvalue increases from −7.6 to −6.5;
there is no change in the weave-mode damping at 30 m /s, while
at 75 m /s, the real part of the weave-mode eigenvalue decreases
from −0.3 to −0.9. Again, the high-speed trend is the most impor-
tant one from a safety perspective, because under these conditions

the weave mode is lightly damped and the introduction of road
camber causes the half-amplitude decay time to decrease from
2.3 s to 0.77 s. The overall conclusion is that the damping of the
high-speed wobble and weave modes both decrease as the vehicle
becomes more nearly perpendicular to the road surface.

Figure 12 shows a set of root-locus diagrams for the machine
operating at 5 deg and 15 deg of roll angle. Direct calculation
using Eq. �15� shows that at 5 deg of roll angle, the road camber
can be decreased to −29 deg without a loss of static roll stability.
Therefore, in comparison to Fig. 10, the range of road camber
angles investigated can be expanded to include adverse �negative�
road camber conditions. The key observation from Fig. 12�a� is
the fact that the high-speed damping of both the wobble and
weave modes is lowest at 5 deg of road camber, which is the
condition under which the tires are almost perpendicular to the
road. The damping of both modes then gets progressively higher
as the angle between the tires and the road increases. It will be
shown in a subsequent figure that this trend is insensitive to the
sign of the tire-to-road roll-angle increase. As before, at low
speed, both the wobble- and weave-mode dampings are greatest
when the road camber angle is 5 deg. Figure 12�b� serves only to
reinforce the observation that the high-speed weave- and wobble-
mode dampings are lowest when the road tires are perpendicular
to the road and that this trend then reverses at low speed. In order
to clarify the quantitative nature of these trends, the real parts of
the wobble and weave modes, as a function of road camber angle,
are plotted in Figs. 13 and 14, respectively. In each case, the �a�
plot corresponds to 10 m /s, which is representative of the low-
speed behavior, while the �b� plots correspond to the 75 m /s,
which is representative of high speeds. At low speeds, it can be
seen that the wobble-mode damping is greatest when the road
camber angle and the machine roll angle are equal, or in other
words when the tire is perpendicular to the road. This is true of
each of the four machine-roll-angle test conditions. It is also in-
teresting to note that the damping of both modes is insensitive to
the sign of the tire-road camber angle. For the 5 deg roll-angle
case, the modal damping of both modes are very similar for road
camber angles of zero and 10 deg, 	�−�	=5 deg and is the same
in each case. Indeed, these plots indicate a direct relationship be-
tween the modal damping and the tires’ normal load, which is a
function of 	�−�	 rather than �−�; note that Fz is an even func-
tion of �−�; see Eq. �13�. At high speed, the opposite is true in
that an orthogonal relationship between the tire and the road is
detrimental to the stability of the high-speed wobble mode. In the
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extreme high-speed case corresponding to a machine roll angle of
15 deg, the wobble-mode half-amplitude decay time increases
from 0.1507 s ��=−20 deg� to 0.41 s ��=20 deg�.

The road camber-related behavior of the weave mode is exam-
ined in detail in Fig. 14. As with the wobble mode, at low speeds,
it can be seen that the weave-mode damping is greatest when the
road camber angle and the machine roll angle are equal, or when
the tire is perpendicular to the road. In the extreme case, at low
speed, which corresponds to a machine roll angle of 15 deg, the
real part of the weave-mode eigenvalue increases from −6.8 at a
positive road camber angle of �=20 deg to −5.7 at an adverse
camber of �=−20 deg. The important case corresponds to the
75 m /s high-speed situation when positive camber has a destabi-
lizing influence on the weave mode. As with the wobble mode,
at high speed, an orthogonal relationship between the tire
and the road is destabilizing. In the extreme high-speed case
corresponding to a machine roll angle of 15 deg, the weave-mode
half-amplitude decay time increases from 0.46 s ��
=−15 deg� to 2.48 s ��=15 deg�.

The concluding set of results is for a moderately high roll angle
of �=30 deg. The central aim is to establish that the trends al-
luded to above hold good at higher vehicle roll angles. Figure 15
shows a set of root loci corresponding to a machine roll angle of
30 deg; the speed is increased from 5 m /s to 75 m /s, with seven
road camber angles considered. It is clear that the high-speed
weave-mode behavior retains its prior behavior with its damping
increasing as the tire-to-road camber angle increases. It is also
clear that the low-speed weave-mode damping is relatively insen-
sitive to road camber. It is not clear from this plot if there is a
low-speed trend reversal of the type observed earlier. The compu-
tation of the wobble-mode behavior at high roll angles proved
problematic, because despite extensive controller tuning, it is dif-
ficult to maintain a constant trim state under these operating con-
ditions. The overall trends are still clear. At high speeds, the
wobble-mode damping decreases as the tire becomes more nearly
orthogonal to the road, with this trend reversing at lower speeds.
Quantitative clarity is established in Fig. 16 where the real parts of
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the wobble- and weave-mode eigenvalues are plotted as a function
of speed for seven different road camber angles, and a motorcycle
roll angle of �=30 deg. The �a� plot shows that the low-speed
wobble mode is most damped for high positive camber and least
damped for high negative camber, with the 30 deg change in cam-
ber angle decreasing the real part of the wobble mode from ap-
proximately −1.0 to −3.4. The wobble-mode damping then be-
comes relatively insensitive to camber at 40 m /s, with the
wobble-mode damping trend again reversing at high speed. The
�b� plot shows that the low-speed weave-mode damping is insen-
sitive to camber, with the real part of the weave mode increasing
from −6.7 to −6.3 as the road camber is swept from 15 deg to
−15 deg. This trend, such as it is, reverses at a speed of approxi-
mately 50 m /s. At 75 m /s, the weave-mode damping is lowest
for high positive camber and highest for maximum adverse cam-
ber, with the change in the real part of the weave-mode eigenvalue
similar to that observed in the zero roll-angle case.

4 Conclusions
The influence of road camber on motorcycle stability is an issue

that sometimes arises in loss-of-control motorcycle accident in-
vestigations. A typical scenario involves high-speed cornering on
a superelevated motorway. The overarching contribution of this
paper is to clarify the influence of road camber on the stability of
the two important oscillatory modes of behavior associated with
single-track vehicles known as wobble and weave. It must be
emphasized that the conclusions drawn pertain to a particular
class of high-powered sports motorcycles, and are not claimed to
be “true for all motorcycles.”

Contributions include a method of “forcing” a complex nonlin-
ear simulation model to operate stably at a prescribed fixed speed,
fixed roll-angle, and fixed road-camber-angle operating condition.
This involved a number of enhancements to an existing model
including the introduction of local tangent plane approximations
for a conical road surface. Separate tangent planes are required for
each of the road tires, since extensive force, moment, and power
balance testing established that one such tangent plane was inad-
equate at low speeds. It was also found necessary to introduce
adaptive references into both the roll-angle steering control loop
and the rear-wheel drive loop. The first of these adaptive refer-
ences was used to center the machine’s cornering trajectory on an
arbitrary prescribed point in the ground plane �usually the origin
n0 of the inertial reference frame�. Adaptation in the speed refer-
ence of the rear-wheel drive controller was used to remove per-
sistent low-frequency height oscillations that can occur as the ve-
hicle revolves around its cornering trajectory. This phenomenon is
at its most troublesome at large radii of cornering curvature.

Important insights are obtained from the simple static force and
moment balance calculations presented in Secs. 2.5 and 2.6. It is
believed that the single-wide-tire model presented represents a
good balance between fidelity and simplicity for the purposes to
which it is put here. These include the analysis of the way in
which the steady-state tire normal-load and side forces vary with
road camber, the calculation of the machine’s cornering radius of
curvature as a function of speed, roll angle and road camber angle,
and the quantitative characterization of the static roll stability
boundary. The veracity of this simple analysis was established by
comparison to the complex dynamic model presented.

The conventional wisdom as it is taught to advanced police
riders �1�, which is based on simple equilibrium considerations,
focuses on achieving riding conditions that minimize steady-state
tire side forces and maximize the tire normal loading. While this
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is probably the best thing to do in the context of four-wheeled
vehicles, it is not necessarily the right advice to give to motorcy-
clists. It has been demonstrated by high-fidelity dynamic model-
ing that the damping of the high-speed wobble and the high-speed
weave modes are at their minimum when the road tires are verti-
cal to the road. As the tire-road inclination angle increases, the
high-speed wobble and weave-mode damping increases also. This
increased damping does not appear sensitive to the sign of the
tire-to-road inclination angle ��−�� and appears instead sensitive
to 	�−�	; see Figs. 13 and 14. It is therefore concluded that in-
creased tire loading has a destabilizing effect on the high-speed
wobble- and high-speed weave-mode stabilities, because it too
increases with 	�−�	; see Eq. �13� and the simplification that ap-
pears immediately after it. At low speeds, these trends reverse and
the wobble and weave-mode dampings increase as the tires be-
come more nearly vertical with the road. Under these more benign
conditions, the conventional police training advice appears to hold
good.
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Scratching of Elastic/Plastic
Materials With Hard Spherical
Indenters
A mechanistic framework has been developed for interpreting scratch tests performed
with spherical indenters on elastic/plastic materials. The pertinent scaling relations have
been identified through a plastic analysis and the model has been subsequently calibrated
by finite element calculations. The results show that the ratio of scratch force to normal
force (or apparent friction coefficient) can be partitioned into two additive components:
one due to interfacial friction and another associated with plastic deformation. The
plastic component scales parabolically with the normal force and depends only weakly
on the true (elastic) friction coefficient. A simple formula for the scratch force, based on
the plastic analysis and the numerical results, has been derived. Finally, experimental
measurements on two material standards commonly used for nanoindenter calibration
have been used to verify the theoretical results. �DOI: 10.1115/1.2966268�

1 Introduction
The advent of instrumented nanoindenters some two decades

ago has enabled an unprecedented capability for probing the me-
chanical properties of materials over a wide range of length scales
�from nm to mm� and forces �from �N to N�. In addition to their
now-routine use in measuring material stiffness and hardness,
nanoindenters allow studies of creep, dynamic loading, thin film
behavior, fracture, and adhesion. Good summaries of the test
methods and the underlying mechanics are presented in textbooks
by Bhushan �1� and Fischer-Cripps �2� as well as a recent review
article by Gouldstone et al. �3�. A comparatively recent advance-
ment in the field has been the development of instrumented in-
denter probes that can be displaced in a precise manner both nor-
mal and tangential to the sample surface. These probes allow
measurement of tribological properties—those involving friction,
abrasion, and wear—at length scales and force ranges typical of
normal indentation �4–15�. Despite the technological advance-
ments, analysis protocols for extracting fundamental material
properties from such tests have not reached maturity levels com-
parable to those used to ascertain modulus and hardness from
indentation tests.

The principal goal of the present article is to outline a mecha-
nistic framework for interpreting measurements from scratch tests
on elastic/plastic materials with spherical indenters. The latter
shape selection is motivated by the fact that, at low force levels,
stresses beneath a spherical indenter are below the elastic limits
and hence the tribological properties can be ascertained in the
absence of plasticity; yet, at higher force levels, responses in the
transitional elastic/plastic and the fully plastic regimes can also be
probed. In contrast, with sharp-tipped indenters such as the cube-
corner, Berkovich, and cone, the accessible behavioral domains
are far more restricted. That is, because of the self-similar defor-
mation fields associated with sharp tips, the strain level is fixed
�independent of normal force� and dictated by indenter shape
�16–18�. Probing material properties over a range of strains re-
quires use of indenters of varying shapes. Even then, if the tips are
very sharp, measurements cannot be made in the elastic domain.
Selection of the spherical indenter is further motivated by the
recognition that the asperities that make contact during sliding of

surfaces are more closely represented by protuberances with a
constant �finite� curvature rather than ones with infinitely sharp
points.

As a prelude to forthcoming results and to provide perspective,
the test conditions of interest and the dominant behavioral do-
mains are illustrated in Fig. 1. Here a rigid sphere is pressed into
contact with a flat slab of plastically deformable material with
normal force FN and subsequently slid across the slab surface with
lateral force FL. At sufficiently low levels of FN, wherein the
contact is elastic, sliding occurs subject to Coulomb’s law, with
friction coefficient ��FL /FN. In contrast, at high force levels,
both initial normal contact and subsequent sliding involve plastic
deformation. In this domain, the normalized scratch force �or ap-
parent friction coefficient�, FL /FN, increases approximately para-
bolically with FN and exceeds the true �elastic� friction coeffi-
cient. An intermediate force range exists within which
deformation involves comparable amounts of elastic and plastic
strains and the curves in Fig. 1 transition accordingly. The high
load domain is the main focus of the present article.

The remainder of this article consists of three parts. In the first,
an approximate analytical model of scratching of a rigid, perfectly
plastic material based on a virtual work analysis is presented. The
model is used to identify the scaling relation between the scratch
force and the geometric and material properties �resulting in the
nondimensional parameters of the coordinate axes in Fig. 1�.
Next, finite element calculations are used to investigate the effects
of normal force and friction coefficient on scratch force, with the
goal of ascertaining the key nondimensional parameters. Finally,
experimental measurements on two material standards are pre-
sented and compared with the model predictions.

2 Analytical Model
A lower-bound estimate of the scratch force is obtained using

established theorems of classical plasticity. The geometry to be
analyzed is depicted by the schematic in the top right corner of
Fig. 1. Scratching proceeds in two steps. First, a rigid spherical
indenter of radius R is pushed into a flat semi-infinite slab of rigid,
perfectly plastic material with normal force, FN. The radius, a, of
the resulting indentation is given by �19�

a = �C1Ru0 =� FN

C2��y
�1�

where u0 is the maximum penetration depth, �y is the material
yield strength, C1=2.7, and C2=3.0. The indenter is then moved
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laterally �in the x-direction� while maintaining constant normal
force. Three additional assumptions are invoked. �i� Sliding at the
interface between the two bodies obeys Coulomb’s law. �ii� The
scratch depth us is equal to the initial indentation depth u0 �veri-
fied by subsequent finite element calculations�. �iii� The forces at
the indenter/material interface remain below those needed to pro-
duce sticking friction.

In the steady-state domain, the rate of work done by scratching,
dW /dx=FL, can be partitioned into two components: one,
dWp /dx, due to plastic deformation beneath the indenter tip, and
another, dWf /dx, from frictional sliding. The rate of dissipation is
obtained from an analysis of the following virtual sequence of
operations �illustrated in Fig. 2�. �i� A thin slab of thickness dx
perpendicular to the scratch direction and upstream from the
scratch tip is removed from the sample. �ii� The slab is indented
by a cylindrical roller of radius R under plane strain conditions to
produce a cylindrical divot of width 2a and depth us �identical to
those in the scratch wake�. �iii� The indenter is slid across the
surface of the slab a distance dx. �iv� The deformed slab is
“pasted” onto the opposite face, downstream from the scratch tip,
thereby advancing the indenter tip by a distance dx. The work
done during this sequence �in Steps �ii� and �iii� in particular� is

dW

dx
= FL =�

0

u0

fN�u�du + �FN �2�

where fN�u� is the force per unit length of cylinder, given by

fN�u� = 2a�yC3 �3�

where C3�2.5–3 �20�. Combining Eqs. �1�–�3� and integrating
yields

FL

FN
= � + k0� FN

R2�y
�4�

where

k0 �
4C3

3C1��C2�3/2 � 0.05 �5�

This relation identifies the two pertinent nondimensional pa-
rameters: the normalized scratch force, FL /FN, and the normalized
normal force, FN /R2�y. These represent the parameters on the
coordinate axes in Fig. 1 and are utilized in the presentation of
subsequent numerical and experimental results.

3 Numerical Analysis

3.1 Finite Element Model. Calculations of scratch response
were performed using the commercial finite element code

Fig. 1 Overview of the scratch configuration, the dominant behavioral do-
mains, and the trends in scratch force with normal force and friction
coefficient

Fig. 2 Schematic of virtual cutting, indenting, and pasting op-
erations used to model steady-state scratching
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ABAQUS/EXPLICITV6.4. For consistency with the experiments de-
scribed in the next section, the indenter is modeled as a rigid
axisymmetric cone with a full apical angle 2�=60 deg and a
spherical tip of radius R. All other length scales are subsequently
normalized by R so the absolute value of R is arbitrary. The in-
denter is meshed with four-noded 3D rigid elements. The material
being indented is represented by a biased mesh �refined near the
indentation surface and coarser toward its base� using eight-noded
3D brick elements with reduced integration �Fig. 3�. Although all
results are presented in a nondimensional form, the absolute ma-
terial properties for most calculations were selected to be close to
those of typical engineering polymers ��y =60 MPa, E=3 GPa,
and �=0.3�. To assess the effects of yield strain, several simula-
tions were performed with the same values of �y and � but with a
higher modulus: E=300 GPa. To ensure numerical stability, the
hardening rate subsequent to yielding was taken to be 3 MPa �fi-
nite but small�. Surface sliding was allowed to occur in accor-
dance with Coulomb’s law, with friction coefficients �=0, 0.125,
or 0.25. The bottom surface of the specimen was fixed while
symmetry boundary conditions were applied to its sides.

The calculations were performed in two steps, consistent with
those described in Sec. 2. That is, a normal load was applied to the
indenter, up to peak values in the range FN /R2�y �1 and peak
normal displacements u0 /R�0.2, and the indenter then displaced
laterally up to a displacement of w /R�3.

3.2 Indentation. An initial assessment of the numerical re-
sults was made by comparing the indentation response with exist-
ing analytical and experimental results. To facilitate the compari-
sons, the forces and displacements have been normalized by their
corresponding values at the onset of yield, Fy and uy, given by
�1,20�

Fy = 21.2
R2�y

3

Ē2
�6�

and

uy = 6.3
R�y

2

Ē2
�7�

where Ē is the plane strain modulus.
Two limiting behavioral domains exist. When F /Fy is not much

greater than unity, the spatial extent of plasticity and the magni-
tude of the plastic strains are small and hence the indentation
response is given to a good approximation by the elastic �Hert-
zian� solution �1,20�

F

Fy
= 	 u

uy

3/2

�8�

At the other limit, where F /Fy �1, the force-displacement re-
sponse asymptotically approaches that for a rigid, perfectly plastic
material, given by �1,20�

F

Fy
= 5.5	 u

uy

 �9�

Comparisons of the numerical results and the analytical solutions
are presented in Fig. 4. Also shown are experimental results for
steel �from a previous study� as well as those for polymethyl-
methacrylate �PMMA� �from the present study, described below�.
Good agreement is obtained over the entire loading range. Addi-
tionally, friction has a minimal effect over the range of � values
examined here, consistent with previous numerical investigations
�19,21�.

Parenthetically, the indentation response over the entire loading
range can be adequately described by a simple formula that com-
bines the results in Eqs. �8� and �9�. Here the total displacement at
a prescribed force is taken as the sum of those for purely elastic
and purely plastic indentations, namely,

Fig. 3 Finite element mesh used for scratch and indentation simulations
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u

uy
= 	 F

Fy

2/3

+ 0.18	 F

Fy

 �10�

This relation reduces to that in Eq. �8� as F /Fy→0 and that in Eq.
�9� when F /Fy �1. Upon comparison with the numerical results
�Fig. 4�, it appears to be reasonably accurate over the intermediate
force range as well.

3.3 Scratching. Representative results from the scratch simu-
lations are presented in Fig. 5. For normal forces above that
needed to initiate yield, both the normal displacement u /R and the
scratch force FL /FN initially increase slightly with w /R �a conse-
quence of the loss of contact between the indenter and the mate-
rial in the scratch wake�, reach a peak, and then decrease and
saturate at constant values, independent of scratch displacement.
One manifestation of the steady state is the development of a
uniform plastic strain field that translates with the indenter tip
during sliding, as illustrated in Fig. 6. An additional notable result
is that, for the case where �=0, the scratch depth at steady state is
essentially identical to the initial indentation depth �following ap-
plication of the normal force�, consistent with the underlying as-
sumption of the model in Sec. 2. For nonzero values of �, the
steady-state scratch depth falls somewhat below the indentation
depth �Fig. 5�d��.

Based on dimensional analysis, the critical scratch displace-
ment, wc /R, needed to achieve steady state is expected to scale
with the indent size, a /R. Recognizing that, for small indents,
a /R��u /R, it follows that the corresponding normal displace-
ment uc /R� �wc /R�2. An inspection of the numerical results re-
veals that the onset of steady state can be adequately described by
uc /R�0.1�wc /R�2 �Fig. 5�b��.

The effects of the normal force and the friction coefficient on
the scratch force are summarized in Fig. 7. When plotted as
FL /FN versus �FN /R2�y, the results are linear for a fixed value of
�, consistent with Eq. �4�. Moreover, upon extrapolation to
FN /R2�y =0 �where the material response is purely elastic�,
FL /FN→�, as required. However, in apparent contradiction to
Eq. �4�, the slopes of the lines in Fig. 7 are not constant but rather
exhibit a weak �nearly linear� dependence on �, characterized by

Fig. 4 Indentation of elastic-plastic materials with a rigid
spherical indenter. Analytical solutions: Eq. „8… for elastic con-
tact, Eq. „9… for plastic contact, and Eq. „10… for elastic/plastic
contact. Data for steel adapted from Johnson †20‡. Finite ele-
ment results and experimental measurements on PMMA are
from the present study.

Fig. 5 Results of finite element calculations, showing the effects of normal force and friction
coefficient on scratch force and scratch depth. The open circles in „b… denote the approximate
points at which steady state is attained.
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k0 = k1�1 + k2�� �11�

where k1=0.184 and k2=1.75. This result is depicted by the solid
lines in Figs. 1 and 7. For friction coefficients 0���0.25, k0
falls in the rather narrow range 0.18–0.26. Furthermore, these
values are considerably higher than the analytical prediction �k0
�0.05�, consistent with the lower-bound nature of the model.

The effects of the elastic modulus appear to be small. For the
case where �=0, the scratch forces increase by only about 10% as
E is increased by two orders of magnitude �from 3 GPa to
300 GPa�.

4 Experimental Measurements

4.1 Materials and Test Methods. Scratch tests were per-
formed on two material standards commonly used for indenter
calibration: PMMA and a 99.999% pure �100� Al crystal. Scratch-
ing was performed using a 60 deg conical diamond indenter with
a 1 �m tip radius. The test protocol consisted of �i� applying a
normal load in the range 0.07–1.0 mN �for reasons described be-
low� over a period of 5 s, �ii� holding at the peak load for 5 s, �iii�
displacing the indenter tip laterally over a distance of 10 �m at a
rate of 0.33 �m /s, and �iv� holding for an additional 5 s before
unloading. Material response was characterized by the normalized
scratch force, FL /FN, and the scratch depth, u /R. Remnant
scratches were imaged by scanning probe microscopy �SPM�.

The normal forces used for the preceding scratch tests were
selected on the basis of two criteria: �i� that deformation be well
into the plastic domain, i.e., F /Fy �1, and �ii� that the scratch
depth remain below R, to prevent contact of the conical surface of
the indenter with the test sample. To this end, preliminary inden-
tation tests were performed using a cube-corner tip to ascertain
hardness and modulus. Combining these property values with Eq.
�6� and taking the lower limit on the allowable force to be �10Fy,
the first criterion can be expressed as

�FN/R2�y 	 15
y �12�

where 
y =�y /E. Yield strains obtained from the cube-corner in-
dentations are 
y =0.02 and 0.002 for PMMA and Al, respectively,
and the corresponding critical forces �FN /R2�y �0.3 and 0.03. A
further assessment was made by a series of tests with the sphero-
conical indenter over a wide force range, to confirm that the de-
formation was indeed well into the plastic domain, as manifested
in a constant value of hardness �independent of peak force�. In-
dentation results of this type are plotted on Fig. 8. The maximum
allowable normal force to satisfy the second criterion was esti-
mated from the measured hardness and modulus coupled with the
result in Eq. �12� and the condition u /R�1. The key property
values are summarized in Table 1.

The true �elastic� friction coefficient was measured by scratch
tests performed using an indenter with a 50 �m radius tip.
Strictly, the forces for such tests should remain below that for
yield, i.e., �FN /R2�y �5
y �0.1 for PMMA and 0.01 for Al.
However, as demonstrated below, this criterion is overly stringent,
since FL /FN remains essentially unchanged to significantly higher
force levels.

4.2 Scratch Measurements. Typical scratch measurements
are presented in Fig. 9. For PMMA, the results closely resemble
those obtained from the finite element analysis. Notably, both
FL /FN and u /R initially increase with w /R, reach a peak, and then
fall back to steady-state values. The predicted onset of steady

Fig. 6 Development of plastic strain beneath the indenter dur-
ing a typical scratch simulation for scratch displacements,
w /R, of „a… 0, „b… 0.25, and „c… 2.5 for „„FN /R2�y…

1/2=0.76, �
=0.125…

Fig. 7 Effects of normal force and friction coefficient on
scratch force. The solid lines calculated using the formula
shown with k1=0.184 and k2=1.75. Filled symbols: E=3 GPa.
Open symbols: E=300 GPa.

Fig. 8 Indentation hardness of PMMA, measured over a wide
force range using both spheroconical and cube-corner
indenters
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state, given by uc /R�0.1�wc /R�2, agrees well with the measure-
ments. Once at steady state, FL /FN and u /R exhibit minimal fluc-
tuations. Although similar features are obtained with the Al
sample, the reductions in FL /FN and u /R from their peaks to their
steady-state values are considerably greater. Furthermore, both
FL /FN and u /R exhibit periodic fluctuations with w /R, with
wavelengths that increase with FN.

The differences in steady-state response of the two materials
appear to correlate with the scratch shapes, ascertained from SPM
images �Fig. 10�. In PMMA, the scratches are remarkably uniform
along their length, consistent with the constancy of FL /FN and
u /R. In contrast, in Al, the scratches exhibit scalloped edges, with
characteristic wavelengths that mimic the oscillations in FL /FN
and u /R. It is surmised that this behavior is due to a stick-slip
phenomenon.

Scratch force measurements from about 100 tests with the
1 �m radius indenter are summarized in Fig. 11�a�. When plotted
as FL /FN versus �FN /R2�y �assuming �y =H /3�, the results are
linear for both materials and exhibit similar slopes: k0=0.17 and
0.26 for PMMA and Al, respectively. These values are in reason-
able agreement with those obtained from the finite element calcu-
lations: 0.18�k0�0.26 for 0���0.25. The results of scratch
tests performed with the 50 �m radius tip are plotted on Fig.
11�b�. The apparent friction coefficients obtained from the latter
tests initially decrease with increasing normal force �likely due to
fine-scale surface roughness �1�� but then reach plateau levels and
remain constant with further increases in force. For PMMA, yield-
ing initiates at �FN /R2�y �0.09—somewhat above the values in

Fig. 11�b�—and thus the plateau value, FL /FN=0.27�0.02, is
deemed to be the intrinsic friction coefficient. For Al, yielding is
predicted to occur at a lower force, �FN /R2�y �0.01, near the
transition. Although the plateau is seemingly in the postyielding
domain, the effect of plasticity �via Eq. �4�, plotted as a dashed
line in Fig. 11�b�� is negligible over the force range of interest. As
a result, the average plateau value, FL /FN=0.20�0.01, is taken as
the friction coefficient for this system. Both friction coefficients
obtained in this manner are virtually identical to those inferred
from extrapolations of the data in Fig. 11�a� to �FN /R2�y =0.

5 Concluding Remarks
A mechanistic framework for interpreting scratch tests on plas-

tically deformable materials has been presented. Three behavioral

Table 1 Summary of indentation properties

PMMA Al

Hardness, H �MPa� 320�10 390�20

Modulus, Ē �GPa� 5.0�0.1 73�7

Yield stress, �y �MPa�a 105�4 131�6
Yield force, Fy ��N�b 1.0�0.1 0.009�0.003

Yield displacement, uy �nm�b 2.8�0.3 0.020�0.006

aTaken to be H /3.
bCorresponds to R=1 �m.

Fig. 9 Experimental measurements of scratch force and normal displacement for „a… and „b…
PMMA and „c… and „d… Al. The open circles in „b… and „d… denote approximate points at which
steady state is attained.

Fig. 10 SPM images of scratches in PMMA „top… and Al „bot-
tom… at various levels of normal force
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domains have been identified. For smooth surfaces, the scratch
force FL /FN is constant when the normal force is below that
needed to initiate yield ��FN /R2�y �5
y� and exhibits a linear
dependence on �FN /R2�y in the high force domain ��FN /R2�y

15
y�. Within the transition �5
y ��FN /R2�y �15
y�, the ef-
fects of plasticity are small and, thus, to a good approximation,
FL /FN��.

Although not explicitly addressed in this study, a fourth domain
may arise at low force levels. For most real surfaces �ones that are
not atomically smooth�, contact initially occurs at discrete asperi-
ties �1�. If the number density of asperities �per unit nominal
contact area� remains constant and the asperities deform elasti-
cally, the true contact area would scale as At�a2�FN

2/3. Assuming,
at the simplest level, that the lateral force needed for sliding is
proportional to At, it follows that the friction coefficient should
scale as ��FL /FN�FN

−1/3. This prediction is qualitatively consis-
tent with the reduction in friction coefficient with increasing FN
for both PMMA and Al at the lowest force levels.

Strictly, the present numerical results are applicable to materials
that exhibit time-independent, essentially perfectly plastic behav-
ior subsequent to yielding. The effects of viscoplasticity �pertinent
to polymers such as PMMA� and strain hardening �intrinsic to
pure Al� have yet to be probed. Such effects may account for the
slight differences in values of k0 obtained for the two materials as
well as discrepancies between the experimental values and those
from the finite element calculations.
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Fig. 11 Summary of scratch force measurements. Tests per-
formed with „a… 1 �m and „b… 50 �m tip radius indenters. The
error bars represent standard deviations. The values of FL /FN
at FN /R2�y=0 in „a… were obtained from the plateau values in
„b…. The dashed line in „b… represents the predicted depen-
dence on �FN /R2�y through Eqs. „4… and „11… for �=0.2.
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Panels
This article provides a materials selection methodology applicable to lightweight actively
cooled panels, particularly suitable for the most demanding aerospace applications. The
key ingredient is the development of a code that can be used to establish the capabilities
and deficiencies of existing panel designs and direct the development of advanced mate-
rials. The code is illustrated for a fuel-cooled combustor liner of a hypersonic vehicle,
optimized for minimum weight subject to four primary design constraints (on stress,
temperatures, and pressure drop). Failure maps are presented for a number of candidate
high-temperature metallic alloys and ceramic composites, allowing direct comparison of
their thermostructural performance. Results for a Mach 7 vehicle under steady-state
flight conditions and stoichiometric fuel combustion reveal that, while C–SiC satisfies the
design requirements at minimum weight, the Nb alloy Cb752 and the Ni alloy Inconel
X-750 are also viable candidates, albeit at about twice the weight. Under the most severe
heat loads (arising from heat spikes in the combustor), only Cb752 remains viable. This
result, combined with robustness benefits and fabrication facility, emphasizes the poten-
tial of this alloy for scramjets. �DOI: 10.1115/1.2966270�

Keywords: active cooling, lightweight structures, sandwich panels, hypersonics, multi-
functional optimization, thermal stresses, materials selection

1 Introduction
Components that experience extreme heat flux, while simulta-

neously supporting pressure loads, are frequently encountered in
aerospace and power systems. In some cases, the challenge can be
addressed by using an efficient means for spreading the heat and
then convecting or radiating to the environment from a large area.
Heat pipes are especially effective for this purpose �1�. This strat-
egy is not always viable, whereupon active cooling by a fluid
pumped through the structure is required. In such cases, before
embarking on materials development and fabrication, it would be
most beneficial to have a procedure that simultaneously selects the
preferred material and design, while also highlighting the inad-
equacies of existing materials. The task is complicated by the
intertwining of material properties and geometric parameters.
Namely, the optimal geometries depend on materials properties in
a highly coupled way. The purpose of this article is to describe the
principles governing the development of a code that couples
material choices with design parameters and to present an
illustration.

The procedure is illustrated for a fuel-cooled combustor liner of
a hydrocarbon-powered hypersonic vehicle �Fig. 1� �2,3�. This
choice is timely because, while the potential to achieve positive
thrust from a scramjet has been recently demonstrated �2–4�, se-
lecting materials and generating designs that resist the thermome-
chanical loads for the duration of a typical mission have proved to
be daunting. Some aspects of the design and performance of ac-
tively cooled combustion systems have been explored �5–8�, in-
cluding geometry optimization �9–12�. However, a comprehensive
treatment that accounts for the complete set of thermomechanical
constraints is lacking.

The structure of this article is as follows. A synopsis of the
analysis and optimization protocol is outlined in Sec. 2. Analytical

models for temperature distributions and thermomechanical
stresses are presented in Secs. 3 and 4. Also included are the
results from computational fluid dynamics �CFD� and finite ele-
ment �FE� calculations, designed to critically assess the accuracy
of the model predictions and the key underlying assumptions. For-
mulation of the optimization scheme and its application to a com-
bustor liner of a notional Mach 7 scramjet vehicle are contained in
Sec. 5: inclusive of an assessment of the suitability of a wide
range of candidate structural materials. The implications for ma-
terials selection follow. For facility of presentation, the analytic
details are presented in Appendixes.

2 Principles and Procedures
A prototypical combustor wall for an aerospace system �Fig. 1�

comprises a sandwich plate subject to three loading mechanisms:
external pressure from the combustion gases, internal pressure
from the coolant, and thermal loads due to the temperature differ-
ences between the combustion side and the vehicle exterior. In
addition to the obvious thermostructural requirements �no melting
and no yielding/fracture�, the design may be limited by fuel-
specific constraints �e.g., avoiding coking while promoting crack-
ing� and the need to limit pressure losses in the cooling system.

A variety of shapes can be envisioned for the cooling ducts.
Rectangular, triangular, or rhombic cross section can be manufac-
tured to ensure thin walls and are easiest to model analytically.
The present study focuses on rectangular ducts. Extension to other
periodic shapes is elementary and is not expected to modify the
main conclusions.

The protocol employed for thermostructural analysis and design
optimization consists of the following steps �Fig. 2�. �i� A range is
defined for the expected heating loads �represented by the heat
transfer coefficient hG of the hot gases� and the cooling efficiency

�represented by the coolant flow rate per unit width of panel,V̇eff�.
�ii� A candidate material is selected and its physical and mechani-
cal properties either measured or obtained from handbooks. �iii�
At each point in �hG , V̇eff� space, the design parameters are sys-
tematically varied over a prescribed range and the temperatures
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and stresses calculated for each combination. Upon comparison
with material and coolant properties, the viability of the design is
ascertained. �iv� provided that solutions exist, the design is opti-
mized for minimum mass, subject to a number of design con-

straints. Otherwise, if a solution is not found, the point �hG , V̇eff� is
deemed external to the design space. �v� Once the entire design
space has been scanned for each candidate material, comparisons
are made of materials on the basis of structural robustness

�namely, the extent of feasible solution area in �hG , V̇eff� space�
and weight efficiency.

Temperatures in the panel have been derived using a two-
dimensional resistance network model and the solutions verified
by the CFD and FE calculations. The utility of the temperature
predictions is twofold. First, they are used to ensure that the con-
ditions remain within allowable limits for the material and the
coolant. Second, they become input for calculation of thermal
stresses. To permit formulation of the structural constraints, these
stresses are superimposed on those induced by the pressure loads,
both external to the liner �inside the combustion chamber� and
within the cooling channels. The thermomechanical stresses are
required to remain below the local temperature-dependent mate-
rial strength. A constraint on pressure drop is also imposed.

The assessment facilitates three goals. �i� It determines the rela-

tive merits of representative categories of high-temperature mate-
rials �Tables 1 and 2�, inclusive of refractory alloys and ceramic
matrix composites �CMCs�. �ii� It provides a focus for the devel-
opment of advanced materials that outperform existing options.
�iii� It assesses the possible benefits of superposing a thermal bar-
rier coating �TBC�, such as yttria-stabilized zirconia �YSZ�, mo-
tivated by the extensive use of such coatings in aeroturbines �13�.

3 Temperature Distribution
To obtain analytic estimates of the temperatures, three simpli-

fications are invoked. �i� The top face of the panel is exposed to
hot gases at a uniform adiabatic wall temperature Taw and constant
heat transfer coefficient hG, whereas the bottom face and the sides
are thermally insulated. Consequently, all of the heat passed
through the top face is carried away by the cooling fluid. �ii� No
heat is conducted along the length of the panel in either the struc-
ture or the coolant. This assumption results in slightly conserva-
tive temperature estimates. �iii� The coolant temperature is uni-
form at each cross section, increasing monotonically with distance
z along the panel length from an initial value Tf

o at the channel
inlet to its maximum Tf

max at the outlet.
The thermal resistance network is illustrated in Fig. 3 and the

solutions for the key temperatures are detailed in Appendix A. The
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Fig. 1 „a… Artist rendition of a prototypical hypersonic air-breathing vehicle.
„b… Schematic of actively cooled panel with thermostructural loads.
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main goals are to ascertain the maximum temperatures in the ma-
terial Tm

max and in the fuel Tf
max. Additionally, for the ensuing de-

termination of thermal stresses, four temperature differences are
defined. The first two are those across the top face �in the
y-direction�: one directly above the core web, �Ttf

c , and the sec-
ond at the midpoint between a pair of webs, �Ttf

w. The second two,
�Tpanel

c and �Tpanel
w , are those across the entire panel �also in the

y-direction�, measured from the middle of the top face to the
bottom face, directly above and between the core webs. The
analysis indicates that all the preceding temperature differences
are greatest at the inlet �z=0�.

CFD calculations, performed using the commercial code,

FLUENT©, were used to assess the uniformity of the heat transfer
coefficient around the internal surface of the channel and the ef-
fect of longitudinal conduction. The panel used for these calcula-
tions has a near-optimal geometry �detailed in Sec. 5� and made
from Inconel X-750 �a Ni-based superalloy�. Approximate chemi-
cal compositions and pertinent material properties are summarized
in Tables 1 and 2. The coolant is taken to be JP-7 jet fuel �Table
3�. Both the fuel and the solid are meshed using three-dimensional
elements. The fuel flow rate and hot gas temperature are selected
to be representative of a notional Mach 7 cruise vehicle �Sec. 5�.
The results �Fig. 4�a�� affirm that hC is essentially uniform over
the interior surface of the top face, where the vast majority of the
heat is transferred to the fuel. The variations around the corners
and along the core and bottom face are deemed unimportant, be-
cause the heat transfer averaged over the channel perimeter con-
forms to the value obtained from established correlations �14�,
with an accuracy of about 10%. Additionally, the axial distribution
of the section-averaged hC confirms that full thermal and kine-
matical developments are attained after the fuel has traveled a
distance of a few hydraulic diameters �Fig. 4�b��. Effects of lon-
gitudinal conduction within the solid were ascertained by compar-
ing CFD calculations with and without axial conduction.
For the parameter values selected, the two sets of results are
indistinguishable.

A further assessment of the predicted temperatures was made
through FE calculations of the same panel, performed using the
ABAQUS© code. The mesh consists of quadratic generalized plane
strain elements with reduced integration �CPEG8RHT�. Convec-
tive boundary conditions are applied both to the top face �hG
=445 W /m2 K, Taw=3050 K� and the internal channel surfaces
�hC=2266 W /m2 K, Tf =653 K�. The fuel temperature corre-
sponds to the predicted exit temperature for the relevant geometry
and boundary conditions, assuming an entry fuel temperature Tf

o

=400 K. The remainder of the cell perimeter is thermally insu-
lated.

The steady-state temperature distribution at the channel outlet
and the corresponding analytic predictions at eight critical loca-
tions are shown in Fig. 5. The comparisons reveal that the maxi-
mum temperature in the structure is captured to within 1% accu-
racy. Moreover, the temperature differences that drive the thermal
stresses ��Tpanel= ��Tpanel

c +�Tpanel
w � /2 and �Ttf =�Ttf

c , see Appen-
dix B for details� are also predicted adequately �within about 8%�.
FE calculations for other panel designs and material properties
yielded similar consistency between the numerical results and
analytic predictions.

4 Stress Distributions
Stress estimates were obtained using standard concepts of plate

bending and stretching and assuming the materials to be linear
elastic. Derivations and solutions are in Appendix B. In practice,
some nonlinearity may occur in the most highly stressed locations,
enabling stress redistribution and shakedown �15,16�. Conse-

Table 1 Approximate chemical compositions of the candidate
metallic alloys

Material Approximate chemical composition �wt %�

Inconel 625 Ni–20% Cr–10% Mo–5% Fe–3% Nb
Inconel X-750 Ni–15% Cr–7% Fe–2.5% Ti
Ti 6Al 4V Ti–6% Al–4% V
Ti � 21S Ti–15% Mo–2.7% Nb–3% Al–0.2% Si
NARloy-Z Cu–3% Ag–0.5% Zr
GRCop-84 Cu–6.5% Cr–5.8% Nb
Nb-Cb752 Nb–10% W–2.5% Zr

Table 2 Thermal and mechanical properties of the candidate materials

Material
T*
�K�

�Y �Tf
0�

�MPa�
d�Y /dT
�MPa/K�

E
�GPa�

CTE
�10−6 /K�

ks
�W/m K�

�s
�kg /m3�

Inconel 625 1100 427 −0.31 164 14.0 20.0 8440
Inconel X-750 1100 795 −0.39 128 16.0 23.0 8276
Ti–6Al–4V 675 909 −0.83 90 10.0 11.0 4430
Ti-�-21S 815 1222 −1.46 100 10.3 21.0 4940
NARloy-Z 811 99 −0.009 125 17.0 350.0 9130
GRCop-84 973 205 −0.18 90 19.0 285.0 8756
Nb–Cb752 1470 382 −0.17 110 7.4 50.0 9030
SiC–SiC 1640 200 — 240 4.1 25���, 20 ��� 2900
C–SiC 1810 200 — 100 2.0 15���, 5 ��� 2000
TBC �ZrO2� 1.0 3000

Define a range for:
- thermal loads (hG)
- cooling efficiency (Veff)

Choose a material

Choose (hG , Veff)

Calculate:
- temperatures
- stresses

- Verification (FE+CFD)
- Validation (Experiments)

Optimize geometry
subject to design constraints

DESIGNMAPS

COMPARE
MATERIALS

Fig. 2 Schematic of the materials selection procedure

Journal of Applied Mechanics NOVEMBER 2008, Vol. 75 / 061022-3

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



quently, in the absence of high cycle fatigue, the ensuing results
are conservative. A subsequent article will incorporate yielding
and shakedown and provide an assessment of the extent of the
conservatism. Although the present analysis is for a flat panel, its
extension to cylindrical configurations is straightforward.

4.1 Boundary Conditions. Two idealized sets of boundary

conditions are considered.
I. Linear frictionless supports along the edges in the z-direction

(Fig.6(a)). This constraint prevents bending in the z-direction,
while allowing it in the x-direction �albeit with no rotation at the
ends�. Uniform thermal expansion is allowed along all directions.
The analog for a cylinder would be the absence of constraint on

Table 3 Physical properties of JP-7 jet fuel

Fuel kf �W/m K� � f �Pa s� cp �J/kg K� Prf � f �kg /m3� Tcoke �K�

JP-7 0.11 1.984�10−4 2575 4.64 800 975
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Fig. 3 „a… Thermal resistance network used to determine temperature distributions, along with ex-
pressions for all relevant thermal resistances. „b… Effective network.
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changes in both the diameter and axial length. This boundary con-
dition can also represent multiple linear frictionless supports �Fig.
6�b�� by simply re-interpreting the panel width b as the support
spacing.

II. Two-dimensional continuous bed of rollers (Fig. 6(c)). Uni-
form thermal expansion is permitted in all directions. The external
pressure does not cause panel-level bending but the internal pres-
sure can bend individual face segments.

The use of rollers instead of frictional supports allows uniform
thermal expansion of the panel �with no bending�. While the prac-
tical implementation may be challenging, attaining these condi-
tions is essential to viable solutions. Otherwise, if the plate is
clamped on all sides, the maximum temperature increase that can
be sustained without yielding is only �Tmax= �1−���Y /E� �with
E being Young’s modulus, � the thermal expansion coefficient, �Y
the material yield strength, and � Poisson’s ratio� �17�, well below
the upper use temperature of all of the materials �Fig. 6�d��.

Both the pressure drop and the temperature variation along the
panel length have been neglected. This assumption, combined
with the imposed boundary conditions, ensures that generalized
plane strain conditions are attained along the z-direction.

4.2 Failure Locations. Although the temperature differences,
and hence the thermal stresses, are greatest at the channel inlet,
the material strength is also greatest at this location. Typical
strength reductions with increasing temperature suggest the possi-
bility of preferential failure at the outlet, where the temperature is
at its maximum. To ensure accurate prediction of failure initiation,
thermal stresses should be ascertained at each cross section and

compared with material strength at the pertinent �local� tempera-
ture. Additionally, the stresses due to pressure loads vary with
location within the same cross section and can be of opposite sign
relative to those caused by thermal loads. Thus, establishing a
priori the failure location is not straightforward.

To address this problem, a set of 18 “critical points” has been
identified for close scrutiny, clustered around two failure-
susceptible channels: one at the periphery closest to the supports
and the other at the center �Fig. 7�. Failure of the structure is
averted provided that, for metallic alloys, the Mises stress at each
point remains below the elastic limit. The analog for CMCs is
based on a maximum or minimum principal stress criterion. The
internal pressure in the core channels �which induces large tensile
stresses in all members� combined with the relatively stubby
shape of the optimized members make it unnecessary to design
against buckling �18–26�.

The accuracy of the stress predictions was verified by FE cal-
culations. Illustrative results are presented for the optimized In-
conel X-750 panel subject to the thermal loads described in the
preceding section. The calculations use type II boundary condi-
tions and an internal fuel pressure of 4 MPa �The pressure in the
combustion chamber can be neglected since it has minimal effect
on the stresses for the selected boundary condition.� The bottom is
constrained against translation in the y-direction and periodic
boundary conditions are imposed on the vertical sides �one side is
constrained against translation in the x-direction, whereas all
nodes on the other are required to displace equally in the
x-direction�. The top is traction free.
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drive the thermal stresses are captured accurately.

Journal of Applied Mechanics NOVEMBER 2008, Vol. 75 / 061022-5

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(a)

(b)
Te

m
p

er
at

u
re

d
iff

er
en

ce
,�

T
(K

)

0

200

400

600

800

1000

1200

1400

1600

Alloy

Inconel
625

MAR
M246

Nb
Cb752

SiC-SiC C-SiC

�Tyield
�Tmaterial

(d)

(c)

Fig. 6 Mechanical boundary conditions. †„a… and „b…‡ Linear rollers on two
sides „Type I…. „b… Multiple linear rollers with regular spacing. „c… Uniform two-
dimensional bed of rollers, with impeded rotation at the ends „Type II…. „d…
Benchmark boundary condition: plate sitting on rigid foundation „inset…. The
chart compares the temperature increase from room temperature to the mate-
rial upper use limit needed to cause yielding. Under this boundary condition,
the full high-temperature potential of the materials is not exploited.

061022-6 / Vol. 75, NOVEMBER 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The resulting distribution in the Mises stress is plotted on Fig.
8. Also shown are comparisons between the numerical results and
the analytic predictions along the four critical trajectories, corre-
sponding to the external and internal surfaces of both face sheets,
for thermal, mechanical, and combined thermomechanical load-
ings. The analytic prediction is accurate to within 1% at the most
highly stressed location �Point 1� and within �10% at other loca-
tions on the top face. The corners �Point 2�, where stress intensi-
fication is evident, are exceptions. This discrepancy has not been
pursued for several reasons. �i� For this particular simulation, be-

cause of the relatively low temperature at the corners �Fig. 5�, the
yield strength is high �Table 2� and, given the stress distribution
�Fig. 8�, both corners remain elastic. We speculate that this con-
cept generalizes to metallic systems, but a formal proof requires
further analysis. �ii� Even if localized plasticity at the corners
could not be avoided, the metallics can be readily designed to
assure shakedown, wherein local plasticity occurs only during the
first few thermomechanical cycles. Such a solution may not be
possible for CMCs. �iii� The stress intensification can be reduced
by increasing the fillet radius without imposing a significant
weight penalty.

The agreement on the bottom face is somewhat worse ��20%
at Point 3�. This result is implicit in the model, which underesti-
mates the thermal stress in the bottom face to ensure conservative
stress estimates on the top face. This choice was made because the
critical condition �yielding or fracture� typically occurs in the top
face. Comparisons performed for other materials and geometries
showed similar correlations.

The numerical calculations confirm that the combined thermo-
mechanical stresses are not necessarily the most dangerous. At
Point 5, for instance, the thermal stresses alone are greater than
those under thermomechanical loading.

5 Materials Selection for Scramjet Combustor Liners
The materials selection procedure exposed in Sec. 2 is applied

to the combustor liner of a Mach 7 scramjet cruise vehicle oper-
ating with JP-7 jet fuel. The choice is motivated by the realization
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that the design of vehicles in this velocity range is most mature
and in urgent need of technological advancements in high-
temperature materials and structures.

5.1 Thermomechanical Loads. The thermomechanical loads
on the combustor liners depend on nearly every aspect of the
vehicle design, including the size and shape of the compression
ramp, the size of the combustion chamber, details of the injection
system, and combustion efficiency. For the present illustration, the
vehicle is assumed to be 10 m long and 2.5 m tall, with a bilinear
compression ramp that generates three oblique shocks. The perti-
nent aerothermodynamic conditions for the prescribed vehicle ve-
locity and optimal flight altitude are detailed in Ref. �3�. Fuel
enters the cooling channels with pressure pf

o=4MPa and initial

temperature Tf
o=400 K. On the combustion side, the pressure

pcomb=0.16 MPa, the adiabatic wall temperature Taw=3050 K and
the heat transfer coefficient hG=445 W /m2 K. To assess the ef-
fects of potential heat spikes in the combustion chamber, heat
transfer coefficients up to 1800 W /m2 K are considered. For the
stress analysis, Type I boundary conditions are used with an un-
supported span, b=0.5 m.

For stoichiometric combustion, the fuel flow rate �per unit

width of combustor� is V̇st=0.008 m2 /s. Since the total perimeter

of the combustor liner is 2�b+Hcomb�, with Hcomb the height of the

chamber, the effective flow rate per unit width of liner is V̇st
eff

= V̇stb /2�b+Hcomb�. Upon specifying the dimensions �b=0.5 m

and Hcomb=15 cm�, then V̇st
eff=0.003 m2 /s. To address offstoichio-

metric combustion, an equivalence ratio 	 is introduced, defined
by 	= f / fst, where f is the actual fuel-to-air mass ratio and fst is
the corresponding stoichiometric value. The actual flow rate then

becomes V̇eff=	V̇st
eff. The range 0.6
	
2.5 is used for subse-

quent calculations.

5.2 Design Constraints. A candidate design is deemed ac-
ceptable provided it satisfies four principal constraints: �i� the
stresses induced by the pressure and the thermal loads remain
below representative levels of material strength, �Y; �ii� the maxi-
mum material temperature Tm

max does not exceed the upper use
limit, T*; �iii� the fuel temperature remains below that for coking
�Tcoke=975 K �27��; and �iv� the pressure drop through the chan-
nels is acceptably low ��p�0.1 MPa�. Additionally, to ensure
that designs can be manufactured, secondary constraints are im-
posed on some dimensions, notably: channel width w�2 mm,
channel height L�5 mm, face and core wall thicknesses tc and
tf �0.4 mm, and TBC thickness�0.3 mm.
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For metallic alloys, the yield strength is assumed to decrease
linearly with temperature for T�T*. For the CMCs, the tensile
and compressive strengths are assumed equal and independent of
temperature. Caveats on this choice are discussed later.

5.3 Optimization Scheme. Whenever a solution exists, the
design was optimized for minimum weight. The mass of the TBC
is included to ensure that a finite layer emerges only if it reduces
the overall weight. Numerical optimizations were performed using
the quadratic optimizer MINCON in MATLAB™. Several randomly
generated initial guesses were used to escape from local minima.
In some cases, a manual optimization scheme was employed to
verify the accuracy of the numerical results.

5.4 Principal Results and Interpretation. The procedure
was implemented for a suite of high-temperature materials. Ap-
proximate chemical compositions of the candidate metallic alloys
are listed in Table 1; relevant mechanical properties �for metallic
and ceramic systems� are summarized in Table 2. Design maps are
presented in two formats. �i� In the first �Fig. 9�, the ordinate is
hG, motivated by the appreciation that shocks passing through the
combustor can cause local elevations. The abscissa is the fuel flow

rate, V̇eff. The normalizing parameters for the equivalence ratio
�	= f / fst� and the heat transfer coefficient �hG /hG

nom� are those
expected for steady-state Mach 7 flight conditions. The map speci-
fies domains within which the material can function, with and

without a TBC, as well as a domain of inadmissibility. In this
scheme, the weight is a function of the location on the map. �ii� In
the second �Fig. 10�, hG is fixed �at either 445 W /m2 K or
890 W /m2 K�, the ordinate is the weight of the optimized panel
and the abscissa is again the fuel flow rate.

The overarching implications from Fig. 9 are as follows. �i� In
all cases where solutions are obtained, increasing the flow rate is
beneficial, indicating that the cooling efficiency limits the design
�as opposed to the fuel pressure drop�. �ii� Among the selected
materials, most provide a solution for the nominal Mach 7 condi-
tions �hG=445 W /m2 K�. The exceptions are Inconel 625, Ti–
6Al–4V, and SiC–SiC, which are not viable anywhere within the
design space. �iii� The outcome changes radically if the heat load
is doubled. Namely, for hG=890 W /m2 K, only the Nb alloy
Cb752 and the Cu alloy GRCop-84 are viable without a TBC
�albeit an environmental barrier coating will be needed to avert
oxidation �28��. Furthermore, Cb752 is the only material that can
survive without a TBC at near-stoichiometric fuel flow rates �	
=1�. �iv� The operational design space of essentially all metallics
can be increased by using a TBC, although the benefit differs
among materials: Cb752, Inconel X-750, and GRCop-84 showing
the largest advantage.

Figure 10 compares the optimal panel weights for cases with
and without a TBC. For hG=445 W /m2 K, C–SiC offers the light-
est structure �by a factor greater than 2 relative to most metallic
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alloys�, followed by Inconel X-750 and Cb752. Ti-�21S provides
a lightweight alternative but only when high fuel flow rates are
permitted. For hG=890 W /m2 K, the only viable uncoated mate-
rials are Cb752 and GRCop-84. However, these two materials
exhibit vastly different weight efficiencies: Cb752 is half the
weight of GRCop-84. When a TBC is used, the selection is ex-
panded to include Inconel X-750. �Perhaps surprisingly, C–SiC is
not viable at this heat flux, with or without a TBC, because both
the thermal and the pressure-induced stresses on the hot face ex-
ceed its compressive strength�. A caveat to this outcome is dis-
cussed below. Although a TBC on the Cb752 would enable a
slightly lighter structure, its use would be predicated on the trade-
off between weight savings and added cost. Finally, while increas-
ing the fuel flow rate generally results in lighter structures, the
weight savings is unlikely to be significant enough to overcome
the weight penalty associated with the extra fuel.

The design maps of Fig. 9 and the weight analysis of Fig. 10 do
not divulge the significant amount of valuable information con-
tained in the code about optimal geometries, temperatures,
stresses, and the relative importance of the various design con-
straints. Complete description of these results is beyond the scope
of this paper but will be presented in subsequent more detailed
assessments. One notable observation is that, for essentially all of
the materials and design space, the thermomechanical constraint is
always active. That is, the design is limited by the occurrence of
yielding or fracture. This feature is illustrated for Cb752 in Fig.
11, expressed in terms of constraint activity parameters,  �de-
fined in such a way that unity signals activation of the constraint�.
Occasionally, other constraints are also active. For example, at
low fuel flow rates and high heat flux, the maximum temperatures
in both the structure and the fluid reach their allowable limits.

6 Conclusions
A materials selection strategy has been presented for actively

cooled panels, with implications for aerospace structures. The pro-
cedure encompasses a geometry optimization tool coupled with
analytical models for temperatures and thermomechanical
stresses. A thermal network approach has been used to derive the
temperature distribution, accounting for the possible presence of a
TBC. A sandwich panel analysis has been adopted for the thermo-
mechanical stress calculations. The accuracy of the model predic-

tions and the underlying assumptions has been verified numeri-
cally, employing a combination of FE and CFD calculations.

The methodology has been applied to the combustor liner of a
Mach 7 hydrocarbon-powered vehicle. Realistic operating condi-
tions have been estimated based on established aerothermodynam-
ics considerations �3�. Many of the candidate materials present
feasible designs for at least a limited range of operating loads,
representative of steady-state flight conditions and stoichiometric
fuel combustion. However, the suite of material options is sensi-
tive to the operating loads and the permitted fuel flow rate. In the
present illustration, only Cb752 is viable at the highest heat load
and under stoichiometric fuel combustion. This result, combined
with robustness benefits and fabrication facility, emphasizes its
potential for superior performance, subject to the proviso that oxi-
dation is averted through the use of environmental barrier coat-
ings. For higher fuel flow rates and/or the addition of a TBC,
GRCop-84 and Inconel X-750 become viable, although Cb752
remains the most weight efficient.

Finally, since the thermomechanical constraint is almost always
active in the optimized designs, elevations in the high-temperature
strength of the candidate alloys would yield direct benefits in
weight efficiency. Furthermore, based on observations that C–SiC
can sustain larger temperature gradients than the present model
assumes �29�, it should re-emerge as a viable candidate for the
more severe thermal environments once a revised local-basis fail-
ure criterion has been established.
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Nomenclature
Af � cross-sectional area of the face in a unit cell

�m2�
Ac � cross-sectional area of the core web in a unit

cell �m2�
b � combustor width �m�

cp,f � specific heat of the coolant �J/kg K�
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Fig. 11 Constraint activity map for Cb752 for hG values of „a… 445 W/m2 K and „b… 890 W/m2 K.
Constraint is active when its activity parameter reaches unity. At the lower thermal load, only the
therm-omechanical constraints are active „yielding under mechanical and combined loads…. When the
thermal load is doubled, at low flow rates, both the solid and fuel temperatures approach their maxi-
mum allowable value.
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Dh � hydraulic diameter of the cooling ducts �m�
E � Young’s modulus �Pa�
f � friction factor

	 � fuel/air mass ratio
fst � stoichiometric fuel/air mass ratio
H � panel thickness �m�

Hcomb � combustion chamber height �m�
hG � heat transfer coefficient on the combustor side

�W /m2 K�
hG

nom � heat transfer coefficient on the combustor side
for a notional Mach 7 vehicle �W /m2 K�

hC � heat transfer coefficient on the cooling channel
walls �W /m2 K�

ks
� � through-thickness thermal conductivity of the

material �W/m K�
ks

�
� in-plane thermal conductivity of the material

�W/m K�
kf � thermal conductivity of the coolant �W/m K�

kTBC � through-thickness thermal conductivity of the
TBC �W/m K�

L � height of cooling channel �m�
pf � pressure in the coolant �Pa�
pf

0 � entry pressure in the coolant �Pa�
pcomb � pressure in the combustion chamber �Pa�

Pr � Prandtl number
qw � heat flux into the web �W /m2�
qc � heat flux convected from the top face into the

coolant �W /m2�
qh � horizontal heat flux in the top face �W /m2�

RG � external convective thermal resistance
�W /m2 K�−1

Rcool � internal convective thermal resistance
�W /m2 K�−1

RTBC � conductive thermal resistance across the TBC
�W /m2 K�−1

Rface � conductive thermal resistance across the top
face �W /m2 K�−1

Rh � conductive thermal resistance along the top
face �W /m2 K�−1

R1 ,R2
w ,R2

c � combination of thermal resistances
�W /m2 K�−1

R
w
* ,R

c
*,R

h
* � non-dimensional combination of thermal

resistances
Re � Reynolds number

Taw � adiabatic wall temperature in the combustor
�K�

Tf � coolant temperature �K�
Tf

0 � entry coolant temperature �K�
Tf

max � maximum coolant temperature �K�
Tm

max � maximum temperature in the material �K�
Ttf

w � temperature on the top side of the top face,
over a web �K�

Ttf
c � temperature on the top side of the top face

away from a web �K�
T�i� � temperature at a location i in the material �K�
T* � maximum allowable temperature in the mate-

rial �K�
Tcoke � coking temperature of the coolant �K�

tf � face sheet thickness �m�
tc � core web thickness �m�
u � coolant velocity �m/s�

V̇eff � volumetric fuel flow rate per unit width of the
panel �m2 /s�

V̇st � stoichiometric volumetric fuel flow rate per
unit width of the combustor �m2 /s�

V̇st
eff � stoichiometric volumetric fuel flow rate per

unit width of the panel �m2 /s�
w � width of cooling channel �m�
Z � panel length �m�
� � coefficient of thermal expansion of the material

�K−1�
�p � viscous pressure drop across the panel �Pa�

�Tpanel
c � temperature difference across the panel away

from the core web �K�
�Tpanel

w � temperature difference across the panel above
a core web �K�

�Tpanel � relevant temperature difference across the
panel �K�

�Ttf
c � temperature difference across the top face

away from the core web �K�
�Ttf

w � temperature difference across the top face
above a core web �K�

�Ttf � relevant temperature difference across the top
face �K�

x, y, z � geometric coordinates
	 � equivalence ratio
� f � kinematic viscosity of the coolant �m2 /s�
v � Poisson’s ratio of the material

�Y � yield strength of a metallic material �Pa�
�ult � ultimate stress for a CMC �Pa�

�core,y
pf � stress in the core web along the y-direction

due to the pressure pf �Pa�
�core,z

pf � stress in the core web along the z-direction due
to the pressure pf �Pa�

�face,x
pf � stress in the face sheet along the x-direction

due to the pressure pf �Pa�
�face,z

pf � stress in the face sheet along the z-direction
due to the pressure pf �Pa�

�face,x
pcomb � stress in the face sheet along the x-direction

due to the pressure pcomb �Pa�
�face,z

pcomb � stress in the face sheet along the z-direction
due to the pressure pcomb �Pa�

�face,x
�Tpanel � stress in the face sheet along the x-direction

due to the temperature difference �Tpanel �Pa�
�face,z

�Tpanel � stress in the face sheet along the z-direction
due to the temperature difference �Tpanel �Pa�

�face,x
�Ttf � stress in the face sheet along the x-direction

due to the temperature difference �Ttf �Pa�
�face,z

�Ttf � stress in the face sheet along the z-direction
due to the temperature difference �Ttf �Pa�

�m,x
�i�

� mechanical stress at location i along the
x-direction �Pa�

�m,z
�i�

� mechanical stress at location i along the
z-direction �Pa�

�T,z
�i�

� thermal stress at location i along the
x-direction �Pa�

�T,x
�i�

� thermal stress at location i along the
z-direction �Pa�

� f � mass density of the coolant �kg /m3�
� � nondimensional fin temperature:

�T�y�−Tfuel� / �T�0�−Tfuel�

Appendix A: Thermal Resistance Model

The Model
Among the nine thermal resistances in the model network �Fig.

3�a��, six are independent:
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• top face/hot gas boundary: RG=1 /hG
• across TBC �when present�: RTBC= tTBC /kTBC

�

• across hot face �y-direction�: Rface= tf /ks
�

• along hot face �x-direction�1: Rh= �w+ tc /2� /4ks
�

• top face/coolant boundary: Rcool=1 /hc
• core web �modeled as a 1D thermal fin �30,31��: Rfin

= �tanh−1��2hC /ks
�tcL

2�	��2hC /ks
�tcks

��−1.

Here, hG and hC are the heat transfer coefficients on the hot gas
side and coolant sides, respectively; ks

� and ks
� are the through-

thickness and in-plane thermal conductivities of the material �the
distinction being important for CMCs, wherein ks

��ks
��; and kTBC

is the through-thickness conductivity of the TBC �its in-plane
value is taken as zero, due to the columnar structure of coatings
produced by physical vapor deposition�.

Assuming flow in the cooling channels is turbulent and fully
developed, hC is given by the Gnielinski correlation �14,32�:

hC =
kf

Dh
Nu =

kf

Dh

�f/2��Re − 1000�Pr

1 + 12.7�f/2�Pr2/3 − 1�
�A1�

where kf is the thermal conductivity of the coolant, Pr is the
Prandtl number, Dh=2wL / �w+L� is the hydraulic diameter, and
Re is the Reynolds number:

Re 

uDh

� f
=

V̇effDhH�w + tc�
LwH� f

�A2�

with � f being the kinematic viscosity, V̇eff the volumetric flow rate
per unit width of panel �see Sec. 5.2�, and f is the friction factor,

given by f =0.046Re−1/5 in the domain 2�104
Re
106 �32,33�.
The model can be simplified into the effective network of Fig.

3�b�, characterized by four resistances, R1 ,R2
w ,R2

c ,Rh, where

R1 = RG + RTBC + Rf/2

R2
w = Rf/2 + Rcool

R2
c = Rf/2 + Rfin �A3�

�with Rh previously defined�. The temperatures of interest are
those on the top face, directly over �Ttf

c � and midway between
�Ttf

w� the core members, at both the inlet �z=0� and the outlet �z
=Z�. Since the three fluxes qw ,qc ,qh are also unknown, five equa-
tions are needed to close the system:

Taw − Tfuel = qwR1 + �qw + 2qhtf/w�R2
w

Taw − Tfuel = qcR1 + �qc − 2qhtf/tc�R2
c

Taw − Ttf
w = qwR1

Taw − Ttf
c = qcR1

Ttf
c − Ttf

w = qhRh �A4�
The solution gives the heat fluxes:

qc =
Taw − Tf

R1
R

c
*

qw =
Taw − Tf

R1
R

w
*

qh =
Taw − Tf

R1
R

h
* �A5�

where

R
w
* =

R1�R2
cRh + R1�Rh + 2R2

ctf/tc + 2R2
wtf/w��

R2
cR2

wRh + R1
2�Rh + 2R2

ctf/tc + 2R2
wtf/w� + R1�R2

wRh + R2
c�Rh + 2R2

w�tf/tc + tf/w��	

R
c
* =

R1�R2
wRh + R1�Rh + 2R2

ctf/tc + 2R2
wtf/w��

R2
cR2

wRh + R1
2�Rh + 2R2

ctf/tc + 2R2
wtf/w� + R1�R2

wRh + R2
c�Rh + 2R2

w�tf/tc + tf/w��	

R
h
* =

R1
2�R2

c − R2
w�

R2
cR2

wRh + R1
2�Rh + 2R2

ctf/tc + 2R2
wtf/w� + R1�R2

wRh + R2
c�Rh + 2R2

w�tf/tc + tf/w��	
�A6�

Additionally, at the channel inlet,

Taw − Ttf
w

Taw − Tf
= R

w
*

Taw − Ttf
c

Taw − Tf
= R

c
* �A7�

The coolant temperature is obtained via an energy balance

� fcp,fV̇
effdTf

dz
=

wqw�z� + tcqc�z�
w + tc

�A8�

where � fcp,f is its volumetric specific heat. Combining with Eq.
�A5� gives

d�Taw − Tf�
dz

+
1

R1� fcp,fV̇
eff
� w

w + tc
R

w
* +

tc

w + tc
R

c
*��Taw − Tf� = 0

�A9�

The solution to this differential equation yields the longitudinal
distribution of the coolant temperature:

Taw − Tf

Taw − Tf
0 = exp�− �z� �A10�

where

1The horizontal resistance is not properly conductive, as convection occurs along
one of the sides. FE calculations reveal that using an effective length equal to half the
actual length yields accurate results �hence the factor of 4�.
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� =
1

R1� fcp,fV̇
eff
� w

w + tc
R

w
* +

tc

w + tc
R

c
*� �A11�

The temperature distribution on the hot face can be expressed in
similar form, via Eqs. �A7� and �A10�:

Taw − Ttf
w

Taw − Tf
0 = R

w
* exp�− �z�

Taw − Ttf
c

Taw − Tf
0 = R

c
* exp�− �z� �A12�

All temperatures achieve their maximum at the outlet �z=Z�.
From the preceding analysis, the temperatures at the 18 points

in Fig. 5 are as follows:

T�i� = Taw − �Taw − Tf
0� ·

�1 −
1

2

Rf

R1
�R

c
* exp�− �z� at Points 1 and 10

�R
c
* + �1

2
R

c
* − R

h
* tf

tc
�Rf

R1
�exp�− �z� at Points 2 and 11

�1 −
��L�
�0

Rfin

R1
�R

c
* − 2R

h
* tf

tc
��exp�− �z� at Points 3, 4, 7, 8, 12, 13, 16, and 17

�1 −
1

2

Rf

R1
�R

w
* exp�− �z� at Points 5 and 14

�R
w
* + �1

2
R

w
* + R

h
* tf

w
�Rf

R1
�exp�− �z� at Points 6 and 15

�1 −
��L/2�

�0

Rfin

R1
�R

c
* − 2R

h
* tf

tc
��exp�− �z� at Points 9 and 18

� �A13�

where ��y� /�0 is the nondimensional fin temperature:

��y�

�0

=
T�y� − Tf

T�0� − Tf

=

cosh��2hC

ks
�tc

�L − y��
cosh��2hC

ks
�tc

L� �A14�

with y the coordinate oriented along the fin.
Once all the temperatures in the system are known, simple al-

gebraic manipulation provides the temperature difference across
the top face �directly above and midway between the core mem-
bers�:

�Ttf
c �z�

Taw − Tf
0 = �R

c
* − R

h
* tf

tc
�Rf

R1
exp�− �z�

�Ttf
w�z�

Taw − Tf
0 = �R

w
* + R

h
* tf

w
�Rf

R1
exp�− �z� �A15�

and across the entire panel �above and between the core mem-
bers�:

�Tpanel
c

Taw − Tf
0 = �R2

c

R1
−

Rfin

R1

��L�
�0

��R
c
* − 2R

h
* tf

tc
�exp�− �z�

�Tpanel
w

Taw − Tf
0 = ��R

w
* + 2R

h
* tf

w
�R2

w

R1

− �R
c
* − 2R

h
* tf

tc
�Rfin

R1

��L�
�0

�exp�− �z� �A16�

Appendix B: Stress Analysis

Coolant Pressure
The coolant pressure pf �assumed uniform along z and equal to

pf
0, given that �p� pf

0� induces uniform tensile stresses in the core
members �at Points 9 and 18�, given by

�core,y
pf

pf
=

w

tc
,

�core,z
pf

pf
= �

�core,y
pf

pf
�B1�

with � the Poisson ratio of the material. It also induces combined
tension/bending in the face segments. For Boundary Condition I,
these are

�face,x
pf

pf
= 

L/2tf + �w/tf�2/2 at Points 2, 3, 11, and 12

L/2tf − �w/tf�2/2 at Points 1, 4, 10, and 13

L/2tf + �w/tf�2/4 at Points 5, 8, 14, and 17

L/2tf − �w/tf�2/4 at Points 6, 7, 15, and 16
�

�face,z
pf

pf
= �

�face,x
pf

pf
�B2�

The same solutions apply to boundary condition Type II with the
exception of those for the bottom face segments, which lack the
bending component. Along this face �at Points 3, 4, 7, 8, 12, 13,
16, and 17�, the stresses are simply

�face,x
pf

pf
=

L

2tf
,

�face,z
pf

pf
= �

�face,x
pf

pf
�B3�

Combustor Gas Pressure
For Boundary Condition I, the panel behaves globally as a

clamped-clamped plate under uniform pressure, pcomb. With the
usual assumption that the shear force is supported by the core and
the moment by the face sheets �19�, the stresses in the faces are
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�x,face
pcomb

pcomb
=

1

12

b2

�H − tf�tf
at Points 1, 2, 5, and 6

−
1

12

b2

�H − tf�tf
at Points 3, 4, 7, and 8

1

24

b2

�H − tf�tf
at Points 12, 13, 16, and 17

−
1

24

b2

�H − tf�tf
at Points 10, 11, 14, and 15

�
�z,face

pcomb

pcomb
= �

�x,face
pcomb

pcomb
�B4�

In contrast, for boundary condition Type II, bending is prohibited
and, since pcomb� pf, the additional stress on the top face can be
neglected. For similar reasons, the stresses exerted on the core
members can also be neglected for both boundary conditions.

Thermal Load
The temperature difference across the top face causes compres-

sion along its top surface and tension along its bottom surface �at
the boundary with the coolant�. These stresses are

�face,x
�Ttf = �face,z

�Ttf = −
E��Ttf

2�1 − ��
at Points 1, 5, 10, and 14

E��Ttf

2�1 − ��
at Points 2, 6, 11, and 15�

�B5�

with E and � the Young modulus and the coefficient of thermal
expansion of the material, respectively. Additionally, the average
temperature difference between the top and bottom faces,
�Tpanel= ��Tpanel

w +�Tpanel
c � /2, causes the panel to deform uni-

formly in each of the x- and z-directions, inducing compression in
the top face and tension in the bottom face �17�. Accounting for
the stretching stiffness of the core members along the z-direction
and assuming that the temperatures of the core and the bottom
face are the same at steady state, the resulting additional stresses
are

�face,x
�Tpanel = −

E��Tpanel

2�1 − ��
at Points 1, 2, 5, 6, 10, 11, 14, and 15

E��Tpanel

2�1 − ��
at Points 3, 4, 7, 8, 12, 13, 16, and 17�

�face,z
�Tpanel = −

E��Tpanel�Af + Ac�
�1 − ���2Af + Ac�

at Points 1, 2, 5, 6, 10, 11, 14, and 15

E��TpanelAf

�1 − ���2Af + Ac�
at Points 3, 4, 7, 8, 12, 13, 16, and 17� �B6�

where Af = tf�w+ tc� and Ac= �H−2tf�tc are the cross-sectional ar-
eas of the face and the core in a unit cell, respectively. These
results apply to both boundary conditions.

Failure Conditions
For metals, failure is defined as the onset of yielding. The von

Mises criterion is used, namely,

max
i=1–18

�� �m,x
�i�

�Y�T�i��
+

�T,x
�i�

�Y�T�i��
−

�m,z
�i�

�Y�T�i��
−

�T,z
�i�

�Y�T�i��
�2

+ � �m,x
�i�

�Y�T�i��

+
�T,x

�i�

�Y�T�i��
�2

+ � �m,z
�i�

�Y�T�i��
+

�T,z
�i�

�Y�T�i��
�2� = 2 �B7�

with the stress components and the temperature at each location i
given by Eqs. �B2�–�B6� and �A13�, respectively. The yield
strength of the material �Y is assumed to linearly decrease with
temperature �Table 2�.

Well-designed CMCs typically fail when the normal stress
along the primary fiber orientation attains either the ultimate ten-
sile strength or the compressive strength. Assuming for simplicity
that the strengths in tension and compression are identical and
temperature independent �reasonable for SiC /SiC and C /SiC
�34,35��, the ensuing condition is

max
i=1–18

�max� ��m,x
�i� + �T,x

�i� �
�ult

,
��m,z

�i� + �T,z
�i� �

�ult
�� = 1 �B8�

Pressure Drop
The pressure drop in the coolant due to viscous dissipation over

the length of the panel is �32�

�p =
2� f fZ�V̇eff�2

H2�1 − �̄�2Dh

�B9�

with �̄=1−Lw / �H�w+ tc�� the relative density of the panel.
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Nonlinear Response of a Shallow
Sandwich Shell With
Compressible Core to Blast
Loading
This paper investigates the nonlinear dynamic response of a shallow sandwich shell
subject to blast loading with consideration of core compressibility. The shallow shell
consists of two laminated composite or metallic face sheets and an orthotropic compress-
ible core. Experimental results and finite element simulations in literature have shown
that the core exhibits considerable compressibility when a sandwich panel is subjected to
impulse loading. To address this issue properly in the analysis, a new nonlinear com-
pressible core model is proposed in the current work. The system of governing equations
is derived by means of Hamilton’s principle in combination with the Reissner–Hellinger’s
variational principle. The analytical solution for the simply supported shallow shell is
formulated using an extended Galerkin procedure combined with the Laplace transform.
Numerical results are presented. These results demonstrate that this advanced sandwich
model can capture the transient responses such as the stress shock wave effect and the
differences in the transient behaviors of the face sheets and the core when a sandwich
shadow shell is subjected to a blast loading. However, in the steady state dynamic stage,
all the displacements of the face sheets and the core tend to be identical. This model can
be further used to study the energy absorption ability of the core and the effects of
different material and geometrical parameters on the behaviors of sandwich structures
subject to blast loading. �DOI: 10.1115/1.2937154�

Keywords: shallow sandwich shell, blast, impact, laminated face sheets, compressible
core, dynamic response, sudden loading

1 Introduction
The response of suddenly loaded structural configurations is

essential in ensuring their integrity. Sudden loading can occur, for
example, due to blast from an explosive device and this entails
both distributed particle impact from the explosion fragments and
the overpressure from the shock wave. This study deals with the
dynamic response of sandwich shallow shells to a blast pressure
pulse. There have been indeed recently many efforts to investigate
the blast response of structures and suggest ways of mitigating
their detrimental effects through an optimal sandwich construction
design. Several papers have addressed various aspects of the prob-
lem �1–7�. A typical sandwich structure consists of two stiff
metallic/composite face sheets and a soft honeycomb/foam core.
This layout gives the sandwich material system the integrity of
high stiffness and strength with little resultant weight penalty and
high-energy absorption capability and has led to many successful
applications of sandwich structures in the construction of marine
vessels, aerospace vehicles, and civil infrastructure.

In the study of the response of a sandwich structure to a static
loading or a dynamic loading of long duration, it has been cus-
tomary to neglect the deformation of the core in the transverse
direction �8,9�. The core would then be considered infinitely rigid
in the thickness direction and assumed to only carry the shear
stresses. Though there are two transversely compressive core
models proposed in literature �10–12�, the transversely rigid core
model has been found to be working well in most of the studies
involving static or dynamic-long-duration loading. However, ex-

perimental and numerical results �3–7� have shown that the core
undergoes significant deformation when the sandwich structure
experiences a sudden, impulsive loading and the core plays an
important role in the absorption of the impact energy. Therefore, a
model including the core transverse flexibility would offer a better
prediction over the classic transversely rigid core model in the
study of the transient response of sandwich structures. A detailed
look into the two currently available transversely compressive
core models would reveal that the transverse strains in the models
in Refs. �12,10,11� are constant and linear functions with regard to
the variable in the transverse direction, respectively. However, the
observations in Refs. �6,7� clearly demonstrate that the core trans-
verse deformation/strain is highly nonlinear with regard to the
variable in the thickness direction. Therefore, a more refined core
model is needed in order to obtain a better understanding of the
dynamic behavior of a sandwich construction under sudden, blast
loading. Furthermore, up to date, most of the studies for the re-
sponse of sandwich construction to blast loading have focused on
flat panels or plates. Very few works on this topic are available for
the sandwich shallow shell configuration, which is very often used
in engineering construction, for example, in ship hulls. Therefore,
the investigation of the behavior of the sandwich shallow shell to
blast loading has both practical and theoretical importance.

In this paper, we shall properly address these issues by first
proposing an advanced sandwich shallow shell model that ac-
counts for the highly nonlinear compressibility of the core. The
transient behavior of the face sheets and the core will be analyzed
in some detail. We organize this paper as follows: A nonlinear
transversely compressible core theory is proposed in Sec. 2. In the
model, the strain of the core in the transverse direction is no
longer constant or linear but a third order function with regard to
the transverse variable. The derivation of the governing equations
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and boundary and initial conditions is presented in Sec. 3. These
unknowns in the equations are highly coupled in terms of both
spatial and time variables. The solution procedure for solving the
nonlinear partial governing equations is presented in Sec. 4. Ap-
plications and discussions of numerical results are given in Sec. 5.
In sec. 6, we present some conclusions and related work in the
future.

2 Formulation

2.1 Basic Assumptions. The sandwich shell treated here is
composed of two thin faces of high stiffness and a thick soft core
�Fig. 1�, whose compressibility will also be taken into account.
Because of the core compressibility, the widely used �4� assump-
tion that the transverse displacements of the two face sheets and
the core displacements are equal will not be adopted in this study.
We shall employ the following assumptions:

1 The face sheets satisfy the Kirchhoff–Love assumptions and
the thicknesses are small compared with the overall thickness
of the sandwich section. In the current study, the two face
sheets are further assumed to have identical thickness.

2 The curvatures of each shell in the two directions may not be
equal and the total thickness of the shell section is small
compared to its radii of curvatures.

3 The core is compressible in the transverse direction, that is,
its thickness may change.

4 The bonding between the face sheets and the core is assumed
to be perfect.

5 Uniformly distributed shock wave pressure on the front face
of the shell, will be considered. The intensities of the loading
would range from causing indentation to core crushing or
initiating face damage.

2.2 Kinematics for the Thin Face Sheets and the Com-
pressible Core of a Sandwich Shallow Shell. Thin Face Sheets.
Let a Cartesian coordinates system �x ,y ,z� be on the middle plane
of the core, as shown in Fig. 1. The middle surfaces of the two
face sheets and the core can then be defined in terms of a set of
curvilinear coordinates �� ,� ,�� as x=x�� ,��, y=y�� ,��, and z
= �� ,��. Considering the shallow shell assumptions that the terms
z,�

2 and z,�
2 can be neglected in comparison to unity �13�, the cur-

vilinear coordinate system can be approximated by the Cartesian
coordinates in the middle surface and the transverse displacements

through the thickness can be approximated by the middle surface
displacement for a thin shallow shell. We also define by � a global
transverse coordinate from the midsurface of the core, as opposed
to the local transverse coordinate from the midsurface of each
phase �face sheet or core�, which is denoted by z.

For thin face sheets, the transverse displacements can be
viewed as undergoing no change through the thickness. Therefore,
the displacements in the face sheets can be expressed as

ut�x,y,�,t� = uo
t �x,y,t� − �� +

hc + hf

2
�w,x

t �x,y,t� �1a�

vt�x,y,�,t� = vo
t �x,y,t� − �� +

hc + hf

2
�w,y

t �x,y,t� �1b�

wt�x,y,�,t� = wt�x,y,t�, − hf −
hc

2
� � � −

hc

2
�1c�

for the top face sheet, and

ub�x,y,�,t� = uo
b�x,y,t� − �� −

hc + hf

2
�w,x

b �x,y,t� �2a�

vb�x,y,�,t� = vo
b�x,y,t� − �� −

hc + hf

2
�w,y

b �x,y,t� �2b�

wb�x,y,�,t� = wb�x,y,t�,
hc

2
� � �

hc

2
+ hf �2c�

for the bottom face sheet. Omitting the superscripts t and b, the
nonlinear strain-displacement relations for the face sheets can take
the following form:

��� = � �x

�y

�xy
� = ��o� + z�k� = � �ox + zkx

�oy + zky

�oxy + zkxy
�, z = � �

hc + hf

2

�3�

in which the “�;” sign in the variable z corresponds to the top and
bottom face sheets, respectively, and ��o� is the middle surface
strain given by

��o� = � �ox

�oy

�oxy
� = � uo,x + 1

2w,x
2 + w/Rx

vo,y + 1
2w,y

2 + w/Ry

uo,y + vo,x + w,xw,y + 2w/Rxy

� �4�

Moreover, �k� is the curvature

�k� = � kx

ky

kxy
� = � − w,xx

− w,yy

− 2w,xy
� �5�

where Rx, Ry, and Rxy are the radii of the curvature for the middle
surfaces.

Higher Order Theory for Compressible Cores. The compress-
ibility in the thickness direction of the core can be important for
the absorption ability of a sandwich shallow shell subject to a
suddenly applied loading. This compressibility implies that the
displacement in the thickness direction should be a function of the
variable in the transverse direction and satisfy equilibrium equa-
tions and continuity conditions along the face sheets/core inter-
face. In literature, this function is often approximated in a linear
or quadratic form �4,10�. In this paper, a fourth order nonlinear
core theory is formulated. Details of the formulation are given in
Appendix A. Based on this model, the transverse displacement
can be expressed as follows:

Fig. 1 A sandwich shallow shell subject to a sudden, blast
impact
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wc�x,y,�,t� = �1 −
2�2

hc
2 −

8�4

hc
4 �wo

c�x,y,t� + �2�2

hc
2 +

8�4

hc
4 �w̄�x,y,t�

− � �

hc
+

4�3

hc
3 �ŵ�x,y,t�, −

hc

2
� � �

hc

2
�6�

and the in-plane displacements in the core are

uc�x,y,�,t� = ū�x,y,t� −
�

hc/2
û�x,y,t� + �

hf

hc
w,x

c �x,y,�,t� �7a�

vc�x,y,�,t� = v̄�x,y,t� −
�

hc/2
v̂�x,y,t� + �

hf

hc
w,y

c �x,y,�,t� �7b�

where w0
c�x ,y , t� is the transverse displacement of the middle sur-

face of the core, w̄�x ,y , t� and ŵ�x ,y , t�, ū�x ,y , t� and û�x ,y , t�,
and v̄�x ,y , t�, and v̂�x ,y , t� are defined in Appendix A.

This leads to the following strain-displacement relations for the
core:

�z
c = �−

1

2hc
+

2�

hc
2 −

6�2

hc
3 +

16�3

hc
4 �wt�x,y,t� − �4�

hc
2 +

32�3

hc
4 �wo

c�x,y,t�

+ � 1

2hc
+

2�

hc
2 +

6�2

hc
3 +

16�3

hc
4 �wb�x,y,t� �8a�

�xz
c = −

2

hc
û�x,y,t� + �1���w,x

t �x,y,t� + �2���wo,x
c �x,y,t�

+ �3���w,x
b �x,y,t� �8b�

�yz
c = −

2

hc
v̂�x,y,t� + �1���w,y

t �x,y,t� + �2���wo,y
c �x,y,t�

+ �3���w,y
b �x,y,t� �8c�

in which

�1��� = −
1

2
�1 + 2

hf

hc
� �

hc
+ �1 + 3

hf

hc
� �2

hc
2 − 2�1 + 4

hf

hc
� �3

hc
3

+ 4�1 + 5
hf

hc
� �4

hc
4 �9a�

�2��� = �1 +
hf

hc
� − 2�1 +

3hf

hc
� �2

hc
2 − 8�1 +

5hf

hc
� �4

hc
4 �9b�

�3��� =
1

2
�1 + 2

hf

hc
� �

hc
+ �1 + 3

hf

hc
� �2

hc
2 + 2�1 + 4

hf

hc
� �3

hc
3

+ 4�1 + 5
hf

hc
� �4

hc
4 �9c�

The core is considered undergoing large rotation with a small
displacement; therefore, the in-plane strains can be neglected.

2.3 Constitutive Relations. The equations developed so far
can be applied to general materials. In the following sections, we
shall assume the face sheets to be orthotropic laminated compos-
ites and the core to be orthotropic as well. The stress-strain rela-
tionship for any layer of the face sheets is

�	x

	y


xy
� = �Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66
�� �x

�y

�xy
� or �	� = �Q���� �10�

where Qij for i , j=1,2 ,6 are the plane-stress reduced stiffness
coefficients. With Eqs. �3�–�5�, �8a�–�8c�, and �10�, one can com-
pute the resultants for the top/front face sheet of the sandwich
shallow shell:

�Nt� = � Nx
t

Ny
t

Nxy
t � =	

−hc/2−hf

−hc/2

�	t�d� =	
−�hc/2�−hf

−hc/2

�Qt���t�d� = �At���0
t �

+ �Bt��kt� �11a�

�Mt� = � Mx
t

My
t

Mxy
t � =	

−hc/2−hf

−hc/2

�	t��� +
hc + hf

2
�d� = �Bt���o

t � + �Dt��kt�

�11b�
in which the stiffness coefficients are

�Aij
t ,Bij

t ,Dij
t � =	

−hc/2−hf

−hc/2

Qij � 
1,� +
hc + hf

2
,�� +

hc + hf

2
�2�d�,

i, j = 1,2,6 �12�
Applying a similar procedure, one can obtain the following

resultant expressions for the bottom/back face sheet:

�Nb� = �Ab���0
b� + �Bb��kb� �13a�

�Mb� = �Bb���o
b� + �Db��kb� �13b�

with the stiffness coefficients reading as

�Aij
b ,Bij

b ,Dij
b � =	

hc/2

hc/2+hf

Qij � 
1,� −
hc + hf

2
,�� −

hc + hf

2
�2�d�,

i, j = 1,2,6 �14�
The stress-strain relations for an orthotropic core can be written

as

	z
c = Ec�z

c, 
xz
c = Gxz

c �xz
c , 
yz

c = Gyz
c �yz

c �15�

3 Governing Equations
The equations of motion and appropriate boundary conditions

can be derived using Hamilton’s principle. The sandwich shell is
subjected to a sudden loading q�x ,y , t� on the front face sheet. Let
the strain energy be denoted by U, the external potential by W,
and the kinetic energy by T, then the variational principle is stated
as

�	
to

t1

�T − �U − W��dt = 0 �16�

in which

�T =	
to

t1	
−b/2

b/2 	
−a/2

a/2 
	
−hc/2−hf

−hc/2

t�ut˙ �ut˙ + vt˙ �vt˙ + wt˙ �wt˙ �d�

+	
−hc/2

hc/2

c�uċ�uċ + vċ�vċ + wc˙ �wc˙ �d�

+	
hc/2

hc/2+hf

b�uḃ�uḃ + vḃ�vḃ + wb˙ �wb˙ �d��dxdydt �17�

�U =	
to

t1	
−b/2

b/2 	
−a/2

a/2 
	
−hc/2−hf

−hc/2

�	x
t ��x

t + 	y
t ��y

t + 
xy
t ��xy

t �d�

+	
−hc/2

hc/2

�	z
c��z

c + 	xz
c ��xz

c + 
yz
c ��yz

c �d�

+	
hc/2

hc/2+hf

�	x
b��x

b + 	y
b��y

b + 
xy
b ��xy

b �d��dxdydt �18�
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�W =	
to

t1	
−b/2

b/2 	
−a/2

a/2

q�x,y,t��wtdxdydt �19�

where  is the mass density. The superscript t in Eqs. �18�, �17�,
and �19� denotes the corresponding values for the top face sheet
whereas t when appearing in the variable list of the functions
refers to time. The equation of motion and the boundary condi-
tions can be obtained by substituting the stress-strain relations
�10� and �15� and displacements �6� and �7a�–7�c� into Eqs. �18�,
�17�, and �19�, then into Eq. �16� and employing integration by
parts. This results in seven equations, three for each face sheet and
one for the core. There are seven unknowns: uo

t , vo
t , wt, wo

c, uo
b, vo

b,
and wb.

The resulting equations for the top face sheet are

Nx,x
t + Nxy,y

t − �thf + chc

3
�üo

t − chc

6
üo

b + chchf

420
�23ẅ,x

t + 17ẅo,x
c

− 5ẅ,x
b � − Gxz

c 
 1

hc
�uo

t − uo
b� −

11

15
wo,x

c − �4�w,x
t + w,x

b �� = 0

�20�

Nxy,x
t + Ny,y

t − �thf + chc

3
�v̈o

t − chc

6
v̈o

b + chchf

420
�23ẅ,y

t + 17ẅo,y
c

− 5ẅ,y
b � − Gyz

c 
 1

hc
�vo

t − vo
b� −

11

15
wo,y

c − �4�w,y
t + w,y

b �� = 0

�21�
and

Mx,xx
t + 2Mxy,xy

t + My,yy
t + �Nx

t w,x
t �,x + �Nxy

t w,x
t �,y + �Nyx

t w,y
t �,x + �Ny

t w,y
t �,y − �thf +

29

315
chc�ẅt − c37hc

630
�ẅo

c −
11

37
ẅb� + � �2

�x2 +
�2

�y2�
�
�t hf

3

12
+ c19hchf

2

1155
�ẅt +

chchf
2

27720
�199ẅo

c − 61ẅb�� − chchf

420
�23�üo,x

t + v̈o,y
t � + 5�üo,x

b + v̈o,y
b �� + �1hc�Gxz

c w,xx
t + Gyz

c w,yy
t �

+ �2hc�Gxz
c wo,xx

c + Gyz
c wo,yy

c � − �3hc�Gxz
c w,xx

b + Gyz
c w,yy

b � − �4�Gxz
c �uo,x

t − uo,x
b � + Gyz

c �vo,y
t − vo,y

b �� − �Nx
t /Rx

t + 2Nxy
t /Rxy

t + Ny
t /Ry

t �

−
61

21

Ec

hc
�wt −

358

305
wo

c +
53

305
wb� + q�x,y,t� = 0 �22�

in which �i�i=1, . . . ,4� are constants in terms of the ratio of face
thickness and core thickness as follows:

�1 =
29

315
+

373

630

hf

hc
+

247

252
� hf

hc
�2

, �2 =
37

630
+

37

630

hf

hc
−

383

630
� hf

hc
�2

�23a�

�3 =
11

630
+

11

630

hf

hc
−

23

180
� hf

hc
�2

, �4 =
2

15
+

hf

2hc
�23b�

A similar set of equations for the motion of the bottom face
sheet can be derived, and this is listed in Appendix B.

The equations of motion for the compressible core are

�5hc�Gxz
c wo,xx

c + Gyz
c wo,yy

c � + �2hc�Gxz
c �w,xx

t + w,xx
b � + Gyz

c �w,yy
t

+ w,yy
b �� −

194

315
̂wo

c −
37hc

630
c�ẅt + ẅb� −

17hfhc

210
c�û,x + v̂,y�

+
181hf

2hc

6930
c� �2

�x2 +
�2

�y2�
ẅo
c +

199

724
�ẅt + ẅb��

−
358

105

Ec

hc
�2wo

c − wt − wb� −
11

15
Gxz

c �uo,x
t − uo,x

b �

−
11

15
Gyz

c �vo,y
t − vo,y

b � = − 0 �24�

where

�5 =
194

315
+

194

315

hf

hc
+

383

315
� hf

hc
�2

�25�

Assuming that the sandwich shells are made of orthotropic ma-
terials and substituting Eq. �4� into Eqs. �13a� and �13b� and then
Eqs. �20�–�22�, one can rewrite the nonlinear governing equations
for the top face sheet as

A11
t uo,xx

t + A66
t uo,yy

t + �A12
t + A66

t �vo,xy
t −

Gxz
c

hc
�uo

t − uo
b�

− �thf + chc

3
�üo

t − chc

6
üo

b = f̂1
t �26a�

�A21
t + A66

t �uo,xy
t + A66

t vo,xx
t + A22

t vo,yy
t −

Gyz
c

hc
�vo

t − vo
b�

− �thf + chc

3
�v̈o

t − chc

6
v̈o

b = f̂2
t �26b�

D11
t w,xxxx

t + 2�D12
t + 2D66

t �w,xxyy
t + D22

t w,yyyy
t +

61

21

Ec

hc
�wt −

358

305
wo

c

+
53

305
wb� + �thf + c29hc

315
�ẅt + c37hc

630
�ẅo

c −
11

37
ẅb�

− � �2

�x2 +
�2

�y2�
�t hf
3

12
+ c19hf

2hc

1155
�ẅt +

chf
2hc

27720

��199ẅo
c − 61ẅb�� − �1hc�Gxz

c w,xx
t + Gyz

c w,yy
t �

− �2hc�Gxz
c wo,xx

c + Gyz
c wo,yy

c � + �3hc�Gxz
c w,xx

b + Gyz
c w,yy

b �

= q�x,y,t� + f̂3
t �26c�

in which

f̂1
t = − Gxz

c 
11

15
wo,x

c + �4�w,x
t + w,x

b ��
− A11w,x

t w,xx
t − �A12 + A66�w,y

t w,xy
t − A66w,x

t w,yy
t − A11

w,x
t

Rx

− A12
w,x

t

Ry
− chfhc

420
�23ẅ,x

t + 17ẅo,x
c − 5ẅ,x

b � �27a�
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f̂2
t = − Gyz

c 
11

15
wo,y

c + �4�w,y
t + w,y

b �� − �A21 + A66�w,x
t w,xy

t

− A66w,xx
t w,y

t − A22w,y
t w,yy

t − A21
w,y

t

Rx
− A22

w,y
t

Ry

− chfhc

420
�23ẅ,y

t + 17ẅo,y
c − 5ẅ,y

b � �27b�

f̂3
t = − �4�Gxz

c �uo,x
t − uo,x

b � + Gyz
c �vo,y

t − vo,y
b �� + �Nx

t w,x
t �,x + �Nxy

t w,x
t �,y

+ �Nyx
t w,y

t �,x + �Ny
t w,y

t �,y − �Nx
t

Rx
t +

Ny
t

Ry
t �

− chfhc

420
�23�üo,x

t + v̈o,y
t � + 5�üo,x

b + v̈o,y
b �� �27c�

The first terms in the expressions for f̂1
t and f̂2

t reflect the effects
of the higher order core theory, the second to fourth terms repre-
sent the effects from the von Karman nonlinear theory, the fifth to
seventh terms represent the effects from the initial curvatures of
the shallow shell, and the last terms can be viewed as the excita-
tion produced by the transverse motion for the in-plane motion.

Moreover, f̂3
t includes the membrane-bending coupling effect.

One can also see that the f̂3
t includes the effects from the curva-

tures of the shell and the in-plane motion on the transverse mo-

tion. In f̂1
t , f̂2

t , and f̂3
t , we can further group the nonlinear terms

and define

F̂1
t = A11w,x

t w,xx
t + �A12 + A66�w,y

t w,xy
t + A66w,x

t w,yy
t �28a�

F̂2
t = �A21 + A66�w,x

t w,xy
t + A66w,xx

t w,y
t �28b�

F̂3
t =

Nx
t

Rx
t +

Ny
t

Ry
t − ��Nx

t w,x
t �,x + �Nxy

t w,x
t �,y + �Nyx

t w,y
t �,x + �Ny

t w,y
t �,y�

�28c�
Similarly, one can also recast the equations for core as follows:

�5hc�Gxz
c wo,xx

c + Gyz
c wo,yy

c � + �2hc�Gxz
c �w,xx

t + w,xx
b �

+ Gyz
c �w,yy

t + w,yy
b �� −

194

315
chcwo

c −
358

105

Ec

hc
�2wo

c − wt − wb�

−
37hc

630
c�ẅt + ẅb� +

181hf
2hc

6930
c� �2

�x2 +
�2

�y2�
�
ẅo

c +
199

724
�ẅt + ẅb�� = f̂ c �29�

where

f̂ c =
17hfhc

210
c�û,x + v̂,y� +

11

15
Gxz

c �uo,x
t − uo,x

b � +
11

15
Gyz

c �vo,y
t − vo,y

b �

�30�
Finally, for the bottom face sheet, the equations of motion be-

come

A11
b uo,xx

b + A66
b uo,yy

b + �A12
b + A66

b �vo,xy
b +

Gxz
c

hc
�uo

t − uo
b�

− �bhf +
hc

3
c�üo

b − chc

6
üo

t = f̂1
b �31a�

�A21
b + A66

b �uo,xy
b + A66

b vo,xx
b + A22

b vo,yy
b +

Gyz
c

hc
�vo

t − vo
b�

− �bhf +
hc

3
c�v̈o

b − chc

6
v̈o

t = f̂2
b �31b�

D11
b w,xxxx

b + 2�D12
b + 2D66

b �w,xxyy
b + D22

b w,yyyy
b +

61

21

Ec

hc
� 53

305
wt

−
358

305
wo

c + wb� + �bhf + c29hc

315
�ẅb + c37hc

630
�ẅo

c −
11

37
ẅt�

− � �2

�x2 +
�2

�y2�
�b hf
3

12
+ c19hf

2hc

1155
�ẅb + c hf

2hc

27720
�199ẅo

c

− 61ẅt�� + �3hc�Gxz
c w,xx

t + Gyz
c w,yy

t � − �2hc�Gxz
c wo,xx

b

+ Gyz
c wo,yy

b � − �1hc�Gxz
c w,xx

c + Gyz
c w,yy

c � = f̂3
b �31c�

in which

f̂1
b = Gxz

c 
11

15
wo,x

c + �4�w,x
t + w,x

b �� − A11
b w,x

b w,xx
b − �A12

b + A66
b �w,y

b w,xy
b

− A66
b w,x

b w,yy
b − A11

b w,x
b

Rx
− A12

b w,x
b

Ry

+ chfhc

420
�23ẅ,x

b + 17ẅo,x
c − 5ẅ,x

t � �32a�

f̂2
b = Gyz

c 
11

15
wo,y

c + �4�w,y
t + w,y

b �� − �A21
b + A66

b �w,x
b w,xy

b − A66
b w,xx

b w,y
b

− A22
b w,y

b w,yy
b − A21

b w,y
b

Rx
− A22

b w,y
b

Ry

− chfhc

420
�5ẅ,y

t − 17ẅo,y
c − 23ẅ,y

b � �32b�

f̂3
b = − �4�Gxz

c �u,x
t − u,x

b � + Gyz
c �v,y

t − v,y
b �� + �Nx

bw,x
b �,x + �Nxy

b w,x
b �,y

+ �Nyx
b w,y

b �,x + �Ny
bw,y

b �,y − �Nx
b

Rx
b +

Ny
b

Ry
b� + chfhc

420
�5�üo,x

t + v̈o,y
t �

+ 23�üo,x
b + v̈o,y

b �� �32c�
As before, we can group the nonlinear terms and define

F̂1
b = A11

b w,x
b w,xx

b + �A12
b + A66

b �w,y
b w,xy

b + A66
b w,x

b w,yy
b �33a�

F̂2
b = �A21

b + A66
b �w,x

b w,xy
b + A66

b w,xx
b w,y

b + A22
b w,y

b w,yy
b �33b�

F̂3
b =

Nx
b

Rx
b +

Ny
b

Ry
b − ��Nx

bw,x
b �,x + �Nxy

b w,x
b �,y + �Nyx

b w,y
b �,x + �Ny

bw,y
b �,y�

�33c�

4 Solution Procedure
In this section, the solution procedure for the dynamic response

of sandwich shallow shells will be demonstrated through the study
of the simply supported case. The boundary conditions along the
x=0, a and y=0, b sides �Fig. 1� read as

u0
t = 0, u0

b = 0, v0
t = 0, v0

b = 0, wt = 0, wc = 0, wb = 0

�34�

and

Mxx
t = 0, Mxx

b = 0 for x = 0,a �35a�

Myy
t = 0, Myy

b = 0 for y = 0,b �35b�
The displacements can be assumed as
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uo
t = �

m,n

Umn
t �t�cos

m�x

a
sin

n�y

b

�36a�

v0
t = �

m,n

Vmn
t �t�sin

m�x

a
cos

n�y

b

uo
b = �

m,n

Umn
b �t�cos

m�x

a
sin

n�y

b

�36b�

v0
b = �

m,n

Vmn
b �t�sin

m�x

a
cos

n�y

b

wt = �
m,n

Wmn
t �t�sin

m�x

a
sin

n�y

b

�36c�

wb = �
m,n

Wmn
b �t�sin

m�x

a
sin

n�y

b

wo
c = �

m,n

Wmn
c �t�sin

m�x

a
sin

n�y

b

where Umn
t �t�, Vmn

t �t�, Umn
b �t�, Vmn

b �t�, Wmn
t �t�, Wmn

b �t�, and Wmn
c �t�

are unknown functions of time t. These displacements satisfy the
boundary conditions. Substituting Eqs. �36a�–�36d� into Eqs.

�26a�–�26c�, �29�, and �31a�–�31c� with F̂i
t, F̂i

b�i=1,2 ,3�, and
q�x ,y , t� being expressed into the following form:

F̂1
t = �

mn

F̂1mn
t �t�cos

m�x

a
sin

n�y

b

�37a�

F̂2
t = �

mn

F̂2mn
t �t�sin

m�x

a
cos

n�y

b

F̂3
t = �

mn

F̂3mn
t �t�sin

m�x

a
sin

n�y

b

�37b�

F̂1
b = �

mn

F̂1mn
b �t�cos

m�x

a
sin

n�y

b

F̂2
b = �

mn

F̂2mn
b �t�sin

m�x

a
cos

n�y

b

�37c�

F̂3
b = �

mn

F̂3mn
b sin

m�x

a
sin

n�y

b

q�x,y,t� = �
mn

Q̂mn�t�sin
m�x

a
sin

n�y

b
�37d�

we can obtain sets of second order ordinary differential equations
with regard to the variable time in matrix form:

�Mmn�Ümn�t� + ��mn�U̇mn�t� + ��mn�Umn�t� = Fmn�t� �37e�

where �Mmn� is the equivalent mass matrix, ��mn� is the damping
coefficient matrix, and ��mn� is the equivalent spring constant ma-
trix. These are 7�7 matrices for a given pair �m ,n�.

The displacement vector Umn is defined as Umn

= �Umn
t �t� ,Vmn

t �t� ,Wmn
t �t� ,Wmn

c �t� ,Umn
b �t� ,Vmn

b �t� ,Wmn
b �t��T and the

loading vector Fmn= �F̂1mn
t �t�+ Q̂mn�t� , F̂2mn

t �t� , F̂3mn
t �t� ,0 ,

F̂1mn
b �t� , F̂2mn

b �t� , F̂3mn
b �t��T. The F̂jmn

t �t�, F̂jmn
b �t�, Q̂mn�t� are ob-

tained from Eqs. �37a�–�37d� as

Q̂mn�t� =
4

ab	0

a	
0

b

q�x,y,t�sin
m�x

a
sin

n�y

b
�37f�

F̂1mn
t �t� =

4

ab	0

a	
0

b

F̂1
t cos

m�x

a
sin

n�y

b
�37g�

F̂1mn
b �t� =

4

ab	0

a	
0

b

F̂1
b cos

m�x

a
sin

n�y

b
�38�

with similar expressions for the rest of the F̂jmn
t �t� and F̂jmn

b �t�.
Next, applying the Laplace transform

Ũ�s� = L�U�t���s� =	
0

�

U�t�e−stdt �39�

to Eq. �38�, one can further obtain

�s2�Mmn� + s��mn� + ��mn��Ũmn�s� = F̃mn�s� �40�
In the Laplace space, the solution in terms of the displacements

to Eq. �40� can be obtained without much difficulty if the loading

vector F̃mn= �F̃1mn
t + Q̃mn�s� , F̃2mn

t , F̃3mn
t ,0 , F̃1mn

b , F̃2mn
b , F̃3mn

b �T is
constant, then Eq. �40� is a set of linear algebraic equations, which

can be solved directly for Ũmn= �Ũmn
t , Ṽmn

t ,W̃mn
t ,W̃mn

c , Ũmn
b , Ṽmn

b ,

W̃mn
b �T and then the displacements in time domain Umn

= �Umn
t �t� ,Vmn

t �t� ,Wmn
t �t� ,Wmn

c �t� ,Umn
b �t� ,Vmn

b �t� ,Wmn
b �t��T can be

recovered using the inverse Laplace transform without much dif-
ficulty. Subsequently, the solution for the displacements can be
found by using Eqs. �36a�–�36d�. However, the loading coeffi-

cients F̃jmn
t and F̃jmn

b were derived from expressions �28a�–�28c�
and �33a�–�33c�, which are nonlinear functions of the displace-

ments. However, the right-hand side of Eq. �40�, F̃mn, are nonlin-

ear functions of Ũmn. Therefore, an iterative procedure is devel-

oped as follows: �1� First, Q̃mn is a known function once the
applied load is given. If the right-hand side of Eq. �40� is approxi-

mated by F̃mn= �Q̃mn ,0 ,0 ,0 ,0 ,0 ,0�T, then a first approximation to

the solution is easily obtained as Ũmn�s�=s2�Mmn�+s��mn�
+ ��mn��−1F̃mn �the superscript −1 denotes matrix inversion�. �2�
Application of the inverse Laplace transform to Ũmn�s� can lead to
the corresponding solution Umn�t�. Then, making use of Eqs.
�36a�–�36d�, �33a�–�33c�, and �28a�–�28c�, one can determine the

functions F̂1
t , F̂2

t , F̂3
t and F̂1

b, F̂2
b, F̂3

b and then the corresponding to

these Laplace transforms F̃1
t , F̃2

t , F̃3
t and F̃1

b, F̃2
b, F̃3

b. �3� The next
approximation for the displacements is found by solving Eq. �40�
with the updated vector F̃mn= �F̃1mn

t + Q̃mn�s� , F̃2mn
t , F̃3mn

t ,0 ,

F̃1mn
b , F̃2mn

b , F̃3mn
b �T. This procedure continues until the in-plane

and transverse displacements are determined by the nth iteration
with a convergence tolerance � applied on the displacements nor-
malized by the total height of the sandwich section, such that �
�10−5 between two consecutive steps.

5 Applications and Discussions
The formulas and solution procedure in the foregoing sections

can be applied to investigate the nonlinear transient response of a
shallow shell subjected to a sudden blast loading �14�. Detailed
analysis of a few example problems are presented in this section.

Uniformly Distributed and Exponentially Decaying Blast Load-
ing on an Orthotropic Sandwich Shallow Shell. In this example,
both the top and bottom face sheets of the sandwich shallow shell
are made of E-glass/polyester composite material with stiffnesses
�in GPa�: E1=50.8, E2=35.7, G12=7.1; Poisson’s ratios: �12
=0.35, �21=0.246; and mass density t,b=1632 kg /m3. The ortho-
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tropic core material has the following properties: Ec=1.005 GPa,
Gxz

c =120.6 MPa, Gyz
c =75.8 MPa, �c=0.3, and c=64 kg /m3. The

top and bottom face sheets have an identical thickness hf
=1.0 mm and the thickness of the core is hc=20.0 mm. The geo-
metric dimensions of the shell �Fig. 1� read as �in mm�: a=800,
b=500, Rx=1000, and Ry =600. The top face sheet is subjected to
blast loading, which is uniformly distributed over the entire sheet
surface, but its intensity varies with time exponentially:

pi�t� = qme−t/�, t � 0 �41�

We use in this example the values from Ref. �4�: qm
=60.86 MPa and �=3.33435.

The results in Fig. 2 are the transverse displacements for the
center points in the top face sheet, core middle plane, and bottom
face sheet, respectively, within a few micrometers after the blast
loading impact on the front surface of the top face sheet. An
interesting phenomenon can be observed in the early blast loading
stage: the top face sheet, core, and bottom face sheet behaviors are
very different: �1� The displacement for the top face sheet in-
creases with time positively �relative to the loading direction� due
to the continuously applied loading; �2� the displacement for the
middle plane in the core is negative when time t�2.15 �s, then it
becomes positive; and �3� the displacement of the bottom face
sheet changes from positive to negative around time t=2.6 �s,
then it becomes positive again after time t=6.1 �s. This phenom-
enon reflects the impact shock stress wave propagation in the
sandwich shell. The blast loading impacts on the surface of the top
face sheet at the instant of time t=0+ �s and induces a shock
wave propagating through the thickness of the shell. During this
time period, a negative pressure zone, which is similar to the
cavitation zone in water, behind the shock wave front, is created
in the core. This is why we see the displacement of the middle
plane of the core negative up to ta=2.15 �s. This negative pres-
sure zone reaches the bottom face sheet around tb=2.6 �s. The
displacement of the bottom face sheet then becomes negative until
tc=6.1�s, when this zone is dissipated. One may also interestedly
note that the propagation velocity of the cavity zone is nonlinear
since tc�2tb. This observation clearly demonstrates that the non-
linear higher core theory in this paper can give us deep insight on
what happens at the different phases of the sandwich construction
when it is subjected to a blast loading.

Two points need to be further explained in Fig. 2. First, it can
be observed that the midpoint back face displacement is double
that of the midpoint core and this is because these two displace-
ments are at different time instants and the back face and the core

are different materials. There is actually no direct relation between
them due to the core compressibility, which can mask the other-
wise intuitively derived behavior, i.e., the core can expand in the
process and therefore show larger back face displacement than at
an earlier instant. Furthermore, as the wave propagates in the
sandwich, energy is still added in the material system in this early
time period, which can make up for the energy dissipation as the
wave propagates in the sandwich. Therefore, the larger back face
deflection in Fig. 2 is quite plausible. Second, it can be seen that
during the early part of loading, the face sheets deform in one
direction and the core in the opposite and this is due to the core
compressibility and the shock wave propagation and reflection. It
should be noted that the curve of the core deflection is the deflec-
tion of the initial midpoint of the core, not the current core mid-
point location. In other words, in this early phase, a negative
pressure zone is induced within the core and, since the core is
compressible, it expands in the process of shock wave propaga-
tion. This negative pressure results in part of the sandwich struc-
ture deforming in the opposite direction. Therefore, the observed
deflections are compatible.

The results plotted in Fig. 3 show that the popular assumption
that the displacements of the middle planes in the top face sheet,
the core, and the bottom face sheet are identical may be true only
at some time instants. Most of the time, the transient responses of
these three displacements are different, as will be further shown in
the following discussion.

Presented in Fig. 4 is the transient response in terms of the
displacements �Wt�t�, Wc�t�, Wb�t�� for the center points in the
middle plane of the sandwich shallow shell in a short time period
�0� t�6 ms� after the blast loading is applied on the surface of
the top face sheet. The maximum values of these displacements
happen around time t=0.2 ms and then decrease to near-half of
the maximum values quickly. One can see that the solution con-
verges as the time increases. The detailed drawings in Sections A
and B show that the curves representing the displacements are
tangled in the sense that the core midplane displacement exceeds
that of the midplane bottom face sheet due to the compressibility
of the core. This observation would further indicate that the non-
linear core theory may be a good model to study the behavior of
sandwich structures subjected impact loading.

The behavior of the sandwich shell in the stage from the tran-
sient response to the steady dynamic response is demonstrated in
Fig. 5. It can be seen that after time t�12 ms, the sandwich
structure enters into a steady state dynamic response region. One
interesting result in the figure observed from the steady state dy-
namics response is that the curve for the displacement of the core
is not in the middle between the curves of the top and bottom face
sheets. This is due to the nonlinearity in the core transverse dis-
placement.

Finally, Fig. 6 shows the stress profile 	zz through the thickness
and as a function of time. It can be seen that at the top face sheet,
the stresses are always compressive and the highest in magnitude.
The bottom face sheet shows lower stresses and they can even be
at brief times tensile. This would indicate that damage would most
likely initiate at the front �top� face sheet or even more likely at
the front �top� face sheet/core interface. Such has been prelimi-
nary experimental evidence �15�.

6 Conclusions
In this work, a higher order nonlinear core theory is proposed

and is incorporated into the constitutive equations. A set of non-
linear governing equations is formulated and the solution proce-
dure is obtained using the extended Galerkin method and the
Laplace transform. Numerical results are presented to demonstrate
the application of this higher order core model for the transient
response of a composite sandwich shallow shell subject to blast
loading. The observations obtained in the forgoing study suggest
the following conclusions: �1� This nonlinear higher order core
model can be used to capture the complex behavior such as cavi-

Fig. 2 Transient response of a sandwich shallow shell at the
very early stage of blast loading
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tation in the core caused by the shock wave in the sandwich shell
during the very early stage following the blast loading and the
high levels of core thickness reduction; �2� the conventional as-
sumption that the middle plane of the top face sheet, the core, and
the bottom face sheet is identical may be not adequate in studying
blast loading problems; �3� the highest in magnitude stresses are
observed at the front �top� face sheet, which indicates that damage
would most likely initiate at the front �top� face sheet/core inter-
face.
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Appendix A: Derivation of the Fourth Order Nonlinear
Compressible Core Theory

Let the displacements in the core be approximated by a fourth
order polynomial in terms of the displacements in the top face
sheet, middle plane of the core, and bottom face sheet. Then, the
transverse displacement in the core can be expressed as

wc�x,y,�,t� = ��0 − �2
�2

hc
2 − �4

�4

hc
4�wo

c�x,y,t�

+ ��2
�2

hc
2 + �4

�4

hc
4�w̄�x,y,t�

− ��1
�

hc
+ �3

�3

hc
3�ŵ�x,y,t�, −

hc

2
� � �

hc

2
�A1�

in which w0
c�x ,y� is the transverse displacement of the middle

surface of the core, and w̄�x ,y� and ŵ�x ,y� are, respectively, the
average and difference of the middle surface transverse displace-
ments for the two face sheets,

Fig. 3 Transient response of a sandwich shallow shell at a larger time scale of blast
loading

Fig. 4 Transient response of a sandwich shallow shell at an
even larger time scale following blast loading

Fig. 5 The stage from transient to steady dynamic response
for a sandwich shallow shell subject to blast loading
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w̄�x,y,t� =
1

2
�wt�x,y,t� + wb�x,y,t��

�A2�

ŵ�x,y,t� =
1

2
�wt�x,y,t� − wb�x,y,t��

The in-plane displacements in the core can also be approxi-
mated as follows �fifth power of ��:

uc�x,y,�,t� = ū�x,y,t� + �5
�

hc
û�x,y,t� + �

hf

hc
w,x

c �x,y,�,t�

�A3a�

vc�x,y,�,t� = v̄�x,y,t� + �6
�

hc
v̂�x,y,t� + �

hf

hc
w,y

c �x,y,�,t�

�A3b�

where ū�x ,y , t�, û�x ,y , t� and v̄�x ,y , t�, v̂�x ,y , t� are, again, respec-
tively, the average and difference of the middle surface in-plane
displacements for the two face sheets:

ū�x,y,t� =
1

2
�uo

t �x,y,t� + uo
b�x,y,t��

�A4a�

û�x,y,t� =
1

2
�uo

t �x,y,t� − uo
b�x,y,t��

v̄�x,y,t� =
1

2
�vo

t �x,y,t� + vo
b�x,y,t��

�A4b�

v̂�x,y,t� =
1

2
�vo

t �x,y,t� − vo
b�x,y,t��

Therefore, there are seven constants �i, i=0,6, to be deter-
mined from displacement continuity as follows.

Top face sheet/core interface, �=−hc /2:

�uc�x,y,�,t���=−hc/2 = uo
t �x,y,t� −

hf

2
w,x

t �x,y,t� �A5a�

�vc�x,y,�,t���=−hc/2 = vo
t �x,y,t� −

hf

2
w,y

t �x,y,t� �A5b�

�wc�x,y,�,t���=−hc/2 = wt�x,y,t� �A5c�

Bottom face sheet/core interface, �=hc /2:

�uc�x,y,�,t���=hc/2 = uo
b�x,y,t� +

hf

2
w,x

b �x,y,t� �A5d�

�vc�x,y,�,t���=hc/2 = vo
b�x,y,t� +

hf

2
w,y

b �x,y,t� �A5e�

�wc�x,y,�,t���=hc/2 = wb�x,y,t� �A5f�

Also, at the midsurface of the core, �=0:

�wc�x,y,�,t���=0 = w0
c�x,y,t� �A5g�

Substitution of Eqs. �A1�, �A3a�, and �A3b� into the seven conti-
nuity conditions �A5a�–�A5g� leads to

�0 = �1 = 1, �2 = − 2, �3 = − 4, �4 = − 8, �5 = �6 = − 1/2
�A6�

Appendix B: The Governing Equations for the Bottom
Face Sheet

One can see that the governing equations are nonlinear. Substi-
tuting equations Eq. �4� into Eqs. �13a� and �13b� and then Eqs.
�20�–�22�, the governing equations for the bottom face sheet can
be written as

Nx,x
b + Nxy,y

b − �bhf + chc

3
�üo

b − chc

6
üo

t + chfhc

420
�5ẅ,x

t − 17ẅo,x
c

− 23ẅ,x
b � + Gxz

c 
 �uo
t − uo

b�
hc

−
11

15
wo,x

c − �4�w,x
t + w,x

b �� = 0

�B1a�

Nxy,x
b + Ny,y

b − �bhf + chc

3
�v̈o

b − chc

6
v̈o

t + chfhc

420
�5ẅ,y

t − 17ẅo,y
c

− 23ẅ,y
b � + Gyz

c 
 �vo
t − vo

b�
hc

−
11

15
wo,y

c − �4�w,y
t + w,y

b �� = 0

�B1b�

Mx,xx
b + 2Mxy,xy

b + My,yy
b + �Nx

bw,x
b �,x + �Nxy

b w,x
b �,y + �Nyx

b w,y
b �,x

+ �Ny
bw,y

b �,y − �bhf + c29hc

315
�ẅb − c37hc

630
�ẅ0

c −
11

37
ẅt�

+ � �2

�x2 +
�2

�y2�
�t hf
3

12
+ c19hf

2hc

1155
�ẅb + c hf

2hc

27720
�199ẅo

c

− 61ẅt�� + chfhc

420
�5�üo,x

t + v̈o,y
t � + 23�üo,x

b + v̈o,y
b ��

− �3hc�Gxz
c w,xx

t + Gyz
c w,yy

t � + �2hc�Gxz
c w,xx

b + Gyz
c w,yy

b �

+ �1hc�Gxz
c wo,xx

c + Gyz
c wo,yy

c � − �4�Gxz
c �uo,x

t − uo,x
b � + Gyz

c �vo,y
t

− vo,y
b �� − �Nx

b

Rx
b +

Ny
b

Ry
b� −

61

21

Ec

hc
� 53

305
wt −

358

305
wo

c + wb� = 0

�B1c�
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Singularities interacting with a coated circular inhomogeneity are
analyzed with the method of analytic continuation and the
Schwarz–Neumann’s alternating technique. It is shown that the
solution for singularities in a homogeneous medium can be used
as a building block of the solution for the same singularities in-
teracting with a coated circular inclusion. The obtained solutions
have series forms independent of any specific information about
singularities, and thus they can be interpreted as general solu-
tions for a variety of singularities. �DOI: 10.1115/1.2937149�

Keywords: isotropic elasticity, singularity, coated circular
inclusion, analytic continuation, alternating technique

Elastic interactions between coated inhomogeneities and singu-
larities, such as dislocations and point forces, have received a
considerable amount of attention in literature of solid mechanics
�1–5�. A coated circular inhomogeneity or inclusion denotes a
circular inhomogeneity covered with a dissimilar material with
uniform thickness. Mainly, the method of analytic continuation
�6,7� and the Schwarz–Neumann’s alternating technique �8� were
used to solve the interaction problems. Most previous researches
have been devoted to point forces and edge dislocations, while the
elastic analyses of other singularities, such as point moment, dis-
location dipole, and circular transformation strain spot, interacting
with inhomogeneities are also of recent interest in micromechan-
ics �6�. Unlike the analytic continuation of potential functions
across straight interfaces �6,9,10�, the analytic continuation across
circular interfaces produces additional terms depending on the
specific information of singularities �7�, which hinders obtaining
general solutions for a variety of singularities. In this study, a
unified approach to the problem of singularities interacting with a
coated circular inclusion is developed, in which the method of
analytic continuation is alternatively applied to two concentric
circular interfaces, so that the obtained solutions are independent
of any specific information about singularities.

The components of the stresses �ij and displacements ui for an
isotropic solid under plane deformation are expressed in terms of
Muskhelishvili’s complex potentials ��z� and ��z� as follows
�11�:

�11 + �22

2
= ��z� + �̄�z̄� �1�

�22 − �11

2
+ i�12 = z̄���z� + ��z� �2�

2G�u1 − iu2� = ��̄�z̄� − z̄���z� − ��z� �3�

where �=3–4� for plane-strain deformation and �3−�� / �1+�� for
plane-stress deformation, and � and G are Poisson’s ratio and the

shear modulus, respectively. Here, the overbar � �¯ represents the
complex conjugate and the prime � �� the derivative with respect
to z=x+ iy. The functions ��z� and ��z� in Eq. �3� are related to
Muskhelishvili’s potentials by d��z� /dz=��z� and d��z� /dz
=��z�, respectively. Another potential �R�z� is defined for math-
ematical convenience as

�R�z� � �̄�R2

z
� −

R2

z
�̄��R2

z
� −

R2

z2 �̄�R2

z
� �4�

It is noted that unlike the potentials ��z� and ��z�, the potential
�R�z� is holomorphic in the inverse domain of the analytic do-
main of the potentials ��z� and ��z� with respect to the circle
with radius R and center at the origin, and thus the potential �R�z�
is dependent on the length parameter R. To apply the method of
analytic continuation to circular interfaces with different radii, the
following transformation can be derived from Eq. �4�:

�I�z� =
rII

2

rI
2 �II� rII

2

rI
2 z� + �1 −

rII
2

rI
2���̄� rI

2

z
� −

rI
2

z
�̄�� rI

2

z
�	 �5�

where �I�z� and �II�z� represent �R�z� with R=rI and R=rII,
respectively.

The potentials for a singularity at z=s in an infinite homoge-
neous medium can be written in general as �0�z�=
m=1

M Am / �z
−s�m and �0�z�=
m=1

M Bm / �z−s�m, where the coefficients Am and
Bm typically depend on s and the nature of the singularity. Several
examples of the complex potentials �0�z� and �0�z� �or equiva-
lently �0�z� and �0

R�z� with the definition of �R�z� given in Eq.
�4�� are given in Ref. �6�.

To analyze a singularity interacting with a coated circular in-
clusion as shown in Fig. 1, precisely the same procedure as that of
Choi and Earmme �9,10� can be used. Three cases for the position
of a singularity are separately dealt with.

Case I: A Singularity Embedded in Sc. With the aid of Eq. �5�,
the problem given in Fig. 1 is now considered, in which materials
a, b, and c occupying regions Sa :rI	rI, Sb :rI	r	rII, and
Sc :rII	r, respectively, are perfectly bonded along two concentric
circular interfaces 
I :r=rI and 
II :r=rII. The complex potentials
for the three regions are assumed to have series forms. By then
applying the method of analytic continuation to the two interfaces
alternatively, the unknown potentials are expressed in terms of
�0�z� and �0

II�z�, in which the elastic constants of material c are
implied. This procedure is similar to the four steps described in
Appendix A of Choi and Earmme �9�. Therefore, the details are
suppressed here, but the results are as follows:
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ducted by Zhigang Suo. Fig. 1 A singularity interacting with a coated circular inclusion
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��z� =�
�a�z� = 


n=1

� ��1 + �ab���n�z� + dn� +
en

1 − ab
 in Sa

�b�z� = 

n=1

�

��n�z� + �̃n�z�� in Sb

�c�z� = �0�z� + �bc�0
II�z� + d0 +

e0

1 + bc
+ 


n=1

� ��1 + �cb���̃n�z� + fn�z�� +
gn�z�

1 − cb
 in Sc

� �6a�

��z� =�
�a

I �z� = 

n=1

� ��1 + �ab��n
I �z� +

en

1 + ab
	 in Sa

�b
I �z� = 


n=1

�

��n
I �z� + �̃n

I �z�� in Sb

�c
II�z� = �0

II�z� + �bc�0�z� + �bcd0 +
e0

1 − bc
+ 


n=1

� ��1 + �cb��̃n
II�z� +

gn�z�
1 + cb

	 in Sc

� �6b�

where the recurrence formulas for �n�z�, �n
I �z� �or equivalently �n

II�z��, �̃n�z�, and �̃n
I �z� �or equivalently �̃n

II�z�� �n=1,2 , . . . � are
given, respectively, as

�n+1�z� = ��1 + �bc���0�z� + d0� +
e0

1 − bc
�n = 0�

�cb�̃n
II�z� + fn�z� +

gn�z�
1 + cb

�n = 1,2, . . . � �
�7a�

�n+1
II �z� = ��1 + �bc��0

II�z� +
e0

1 + bc
�n = 0�

�cb�̃n�z� + �cbfn�z� +
gn�z�

1 − cb
�n = 1,2, . . . � �

�7b�

�̃n�z� = �ab�n
I �z� + dn +

en

1 + ab
�n = 1,2, . . . � �7c�

�̃n
I �z� = �ab�n�z� + �abdn +

en

1 − ab
�n = 1,2, . . . � �7d�

In Eqs. �6a�, �6b�, and �7a�–�7d�, �ab and ab are two nondimen-
sional Dundurs parameters and �ab and �ab are another pair of
nondimensional parameters, of which the definitions are given in
Eqs. �4� and �5�, respectively, of Choi and Earmme �10�. It is
worth noting that in Eqs. �6a�, �6b�, and �7a�–�7d� �n

I �z� and

�̃n
I �z� can be transformed into �n

II�z� and �̃n
II�z�, respectively, with

Eq. �5�, and vice versa. The unknown coefficients dn and en �n
=0,1 ,2 , . . . � and the unknown functions fn�z� and gn�z� �n
=1,2 , . . . � are given as follows:

dn = �−
2bc

1 + �bc − 2bc
Re��0�0�� + i

2�bc

1 − �bc
Im��0�0�� �n = 0�

−
2ab

1 + �ab − 2ab
Re��n�0�� + i

2�ab

1 − �ab
Im��n�0�� �n = 1,2, . . . � � �8a�

en = �
�1 + �bc��3bc − �bc�

1 + �bc − 2bc
Re��0�0�� − i

��bc + bc��1 + �bc�
1 − �bc

Im��0�0�� �n = 0�

�1 + �ab��3ab − �ab�
1 + �ab − 2ab

Re��n�0�� − i
��ab + ab��1 + �ab�

1 − �ab
Im��n�0�� �n = 1,2, . . . � � �8b�

fn�z� =
��cb − cb�

1 − �cb + 2cb
rII

2 Re��n� − i
�cb − cb

1 + �cb
rII

2 Im��n� +
��cb − cb��n + ��cb + cb��̄n

1 − �cb

rII
2

z
�n = 1,2, . . . � �9a�

gn�z� = − ��cb − cb�� 1 + �cb

1 − �cb + 2cb
Re��n� − i Im��n�	rII

2 −
�cb + cb

1 − �cb
���cb − cb��n + �1 + cb��̄n�

rII
2

z
�n = 1,2, . . . � �9b�
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where �n, �n, and �n �n=1,2 , . . . � are determined by

�n � lim
x→0

d

dz
��̃̄n� rII

2

z
�	, �n � lim

x→0

d

dz
��̃̄n� rII

2

z
�	 , �10�

�n � lim
x→0

1

2

d2

dz2��̃̄n� rII
2

z
�	 �n = 1,2, . . . �

Equations �6a� and �6b� together with Eqs. �7a�–�7d�, �8a�, �8b�,
�9a�, �9b�, and �10� are the complete solution for a singularity in
region Sc interacting with a coated circular inclusion.

Case II: A Singularity Embedded in Sb. Similar to Case I, if a
singularity is located in region Sb, the solution has the same form
as that given in Eqs. �6a� and �6b� except for �c�z� and �c

II�z� in
the region Sc given as

�c�z� = �1 + �cb���0�z� + f0�z�� +
g0�z�

1 − cb
+ 


n=1

� ��1 + �cb���̃n�z�

+ fn�z�� +
gn�z�

1 − cb
 in Sc �11a�

�c
II�z� = �1 + �cb��0

II�z� +
g0�z�

1 + cb
+ 


n=1

� ��1 + �cb��̃n
II�z�

+
gn�z�

1 + cb
	 in Sc �11b�

The recurrence formulas for �n�z�, �n
I �z� �or equivalently �n

II�z��,
�̃n�z�, and �̃n

I �z� �or equivalently �̃n
II�z�� �n=1,2 , . . . � have the

same forms as those given in Eqs. �7a�–�7d� except for �1�z� and
�1

II�z� given as

�1�z� = �0�z� + �cb�0
II�z� + f0�z� +

g0�z�
1 + cb

�12a�

�1
II�z� = �0

II�z� + �cb�0�z� + �cbf0�z� +
g0�z�

1 − cb
�12b�

The unknown coefficients dn and en �n=1,2 , . . . � and the un-
known functions fn�z� and gn�z� �n=1,2 , . . . � have the same forms
as those given in Eqs. �8a�, �8b�, �9a�, and �9b�, respectively, in
which �0, �0, and �0, respectively, are given as

�0 � lim
x→0

d

dz
��̄0� rII

2

z
�	, �0 � lim

x→0

d

dz
��̄0� rII

2

z
�	 , �13�

�0 � lim
x→0

1

2

d2

dz2��̄0� rII
2

z
�	

and �n, �n, and �n �n=1,2 , . . . � have the same form as Eq. �10�.
For this Case II, the elastic constants in �0�z� and �0

II�z� are for
material b.

Case III: A Singularity Embedded in Sa. By the same argument
as in Case I, the case in which a singularity is located in region Sa
has the following solution:

��z� =�
�0�z� + �ab�0

I �z� + f0�z� +
g0�z�

1 + ba
+ 


n=1

� ��1 + �ab���̃n�z� + dn� +
en

1 − ab
 in Sa



n=1

�

��n�z� + �̃n�z�� in Sb



n=1

� ��1 + �cb���n�z� + fn�z�� +
gn�z�

1 − cb
 in Sc

� �14a�

��z� =�
�a

I �z� = �0
I �z� + �ba�0�z� + �baf0�z� +

g0�z�
1 − ba

+ 

n=1

� ��1 + �ab��̃n
I �z� +

en

1 + ab
	 in Sa

�b
I �z� = 


n=1

�

��n
I �z� + �̃n

I �z�� in Sb

�c
II�z� = 


n=1

� ��1 + �cb��n
II�z� +

gn�z�
1 + cb

	 in Sc

� �14b�

where the recurrence formulas for �n�z�, �n
I �z� �or equivalently

�n
II�z��, �̃n�z�, and �̃n

I �z� �or equivalently �̃n
II�z��, respectively, are

given as

�n+1�z� = ��1 + �ba���0�z� + f0�z�� +
g0�z�

1 − ba
�n = 0�

�ab�̃n
I �z� + dn +

en

1 + ab
�n = 1,2, . . . � �

�15a�

�n+1
II �z� = ��1 + �ba��0

II�z� +
g0�z�

1 + ba
�n = 0�

�ab�̃n�z� + �abdn +
en

1 − ab
�n = 1,2, . . . � � �15b�

�̃n�z� = �cb�n
II�z� + fn�z� +

gn�z�
1 + cb

�n = 1,2, . . . � �15c�

�̃n
II�z� = �cb�n�z� + �cbfn�z� +

gn�z�
1 − cb

�n = 1,2, . . . � �15d�
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The unknown coefficients dn and en and the unknown functions
fn�z� and gn�z� are as follows:

dn = −
2ab

1 + �ab − 2ab
Re��̃n�0�� + i

2�ab

1 − �ab
Im��̃n�0��

�n = 1,2, . . . � �16a�

en =
�1 + �ab��3ab − �ab�

1 + �ab − 2ab
Re��̃n�0��

− i
��ab + ab��1 + �ab�

1 − �ab
Im��̃n�0�� �n = 1,2, . . . �

�16b�

fn�z� = �
��ba − ba�

1 − �ba + 2ba
rI

2 Re��0� − i
�ba − ba

1 + �ba
rI

2 Im��0� +
��ba − ba��0 + ��ba + ba��̄0

1 − �ba

rI
2

z
�n = 0�

��cb − cb�
1 − �cb + 2cb

rII
2 Re��n� − i

�cb − cb

1 + �cb
rII

2 Im��n� +
��cb − cb��n + ��cb + cb��̄n

1 − �cb

rII
2

z
�n = 1,2, . . . � � �17a�

gn�z� = �− ��ba − ba�� 1 + �ba

1 − �ba + 2ba
Re��0� − i Im��0�	rI

2 −
�ba + ba

1 − �ba
���ba − ba��0 + �1 + ba��̄0�

rI
2

z
�n = 0�

− ��cb − cb�� 1 + �cb

1 − �cb + 2cb
Re��n� − i Im��n�	rII

2 −
�cb + cb

1 − �cb
���cb − cb��n + �1 + cb��̄n�

rII
2

z
�n = 1,2, . . . � � �17b�

�0 � lim
x→0

d

dz
��̄0� rI

2

z
�	, �0 � lim

x→0

d

dz
��̄0� rI

2

z
�	 , �18a�

�0 � lim
x→0

1

2

d2

dz2��̄0� rI
2

z
�	

�n � lim
x→0

d

dz
��̄n� rII

2

z
�	, �n � lim

x→0

d

dz
��̄n� rII

2

z
�	 , �18b�

�n � lim
x→0

1

2

d2

dz2��̄n� rII
2

z
�	, �n = 1,2, . . . �

Equations �14a� and �14b� with Eqs. �15a�–�15d�, �16a�, �16b�,
�17a�, �17b�, �18a�, and �18b� are the complete solution for a
singularity in region Sa. Here, the elastic constants in �0�z� and
�0

I �z� are for material a.
In conclusion, a unified approach to the problem of singularities

interacting with a coated circular inclusion is developed, in which
the method of analytic continuation is alternatively applied to two
concentric circular interfaces. A homogeneous solution for singu-
larities serves as a building block for deriving a solution for the
same singularities interacting with a coated circular inclusion in a

series form. The obtained solutions do not depend on any specific
information about singularities, and thus they can be interpreted as
general solutions for a variety of singularities.
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Erratum: “Application of Miniature Ring-Core and Interferometric Strain/
Slope Rosette to Determine Residual Stress Distribution With

Depth—Part I: Theories”
†Journal of Applied Mechanics, 2007, 74„2…, pp. 298–306‡

Keyu Li and Wei Ren

In “References,” the titles of the journals “Adv. Comput. Math.,” “Exp. Tech.,” and “Opt Laser Technol.” were mistakenly printed and
must be corrected as follows:

Ref. �6� Adv. Composite Mater.
Ref. �9� Exp. Mech.
Ref. �10� Exp. Mech.
Ref. �13� Exp. Mech.
Ref. �14� Opt. Lasers Eng.
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Erratum: “Electrostatic Forces and Stored Energy for Deformable
Dielectric Materials”

†Journal of Applied Mechanics, 2005, 72„4…, pp. 581–590‡
Robert M. McMeeking and Chad M. Landis

In this Erratum we point out and correct an omission of an important term in Eq. �8� of our original paper. This equation was a statement
of the conservation of angular momentum and we inadvertently omitted the electrical body couple term that is needed in this momentum
balance. In Eq. �9� the electrical body force components bi

E are defined. A similar equation is needed to define the electrical body couple
as

ci
E = �ijk� jk

M

Then, the correct statement of the balance of angular momentum and its analysis is given as

�
V

ci
EdV +�

V

�ijkxj�bk + bk
E�dV +�

S

�ijkxj�Tk + Tk
E�dS =

d

dt�
V

��ijkxjvkdV ,

�
V

�ijk�� jk + � jk
M�dV = 0

The result of this analysis appears in Eq. �13� of the original manuscript as

� ji + � ji
M = �ij + �ij

M

Note that Eq. �13� does not follow from the original Eq. �8�, but does follow from this corrected version. Hence, Eq. �13� and all of the
remaining equations within the original manuscript are correct.

Journal of Applied Mechanics NOVEMBER 2008, Vol. 75 / 067002-1Copyright © 2008 by ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


	RESEARCH PAPERS
	TECHNICAL BRIEFS
	ERRATA

