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Stochastic Morphological
Modeling of Random Multiphase
Materials

A short-range-correlation (SRC) model is introduced in the framework of Markov/Gibbs
random field theory to characterize and simulate random media. The Metropolis spin-flip
algorithm is applied to build a robust simulator for multiphase random materials.
Through development of the SRC model, several crucial conceptual ambiguities are clari-
fied, and higher-order statistical simulation of random materials becomes computation-
ally feasible. In the numerical examples, second- and third-order statistical simulations
are demonstrated for biphase random materials, which shed light on the relationship
between nth-order correlation functions and morphological features. Based on the obser-
vations, further conjectures are made concerning some fundamental morphological ques-
tions, particularly for future investigation of physical behavior of random media. It is
expected that the SRC model can also be extended to third- and higher-order simulations
of non-Gaussian stochastic processes such as wind pressure, ocean waves, and earth-
quake accelerations, which is an important research direction for high fidelity simulation
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of physical processes. [DOI: 10.1115/1.2957598]

1 Introduction

Physical behavior of natural and synthetic complex heteroge-
neous materials has been a fundamental research topic in diverse
disciplines of geophysics, material science, chemical physics, bio-
medical engineering, etc. [1-3]. Examples of research interests
include transport, electromagnetic, and mechanical properties of
cellular solids, colloids, tissue, bone, porous rocks, soils, and
manufactured composites such as foamed solids and polymer
blends. Modeling and design of complex materials across multiple
length and time scales is currently becoming one of the most
active engineering research topics; thanks to recent advances in
nanotechnology, multiscale modeling, and high-performance com-
puters. There are basically two essential issues in modeling of
stochastic morphology for complex heterogeneous materials:

1. characterization: appropriate translation of morphological
information, generally perceivable by human vision, into a
mathematically tractable model

2. simulation: applicability of a morphological model, i.e.,
whether the model enables convenient Monte Carlo genera-
tion of samples with desired configurations

A satisfactory morphological model should address both issues
successfully, and in this work such a model, namely, the short-
range-correlation (SRC) model, is established explicitly in the
framework of Markov/Gibbs random field theory and is formally
introduced into random media applications. Cross-disciplinary ex-
pertise involved in this study includes stochastic processes and
random field theory, mathematical morphology, statistical me-
chanics, perception, computer vision, signal processes, texture
analysis, statistical geology, pattern recognition, and optics [4-8].

Through development of the SRC model, several crucial con-
ceptual ambiguities are clarified, and higher-order statistical simu-
lation of random materials becomes computationally feasible. The
SRC model takes advantage of a Metropolis spin-flip algorithm
with the aim of minimizing the SRC energy (a descriptor of the
error) of the simulated morphology. A similar approach was ap-
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plied by Yeong and Torquato [9] to morphological simulation,
although that work differed from the current work in three ways.
First, in this study, morphologies are characterized through short-
range-correlation functions, instead of full-range ones, which cap-
tures essential morphological features and significantly improves
computing efficiency. Second, the current algorithm allows more
efficient sample generation, which is the direct result of using a
spin-flip algorithm that allows the volume fraction to vary slightly
from sample to sample. Such variations in volume fraction are
realistic in light of the slight volume fraction variations that occur
in many real materials. Third, the current SRC energy measure, or
error measure, is based on the nth-order correlation functions. The
advantage to measuring the morphological energy (error) in terms
of the nth-order correlation functions is that the importance of
various order statistics can be identified directly from the results.
By applying the morphological energy optimization to other quan-
tities (such as lineal path functions), the connection to the
nth-order statistics of the random process is not clear. In other
words, the most important order of statistics can be identified for
a given microstructure with a given application. In the numerical
examples, second- and third-order statistical simulations are dem-
onstrated for biphase random materials, which shed light onto the
relationship between nth-order correlation functions and morpho-
logical features. Based on the observations, further conjectures are
made, particularly for future investigation of physical behavior of
random media.

The basic premise of this work is that the morphology of a
random microstructure can be described as a stochastic process
that is completely defined by the multivariate distribution, or ap-
proximately characterized with partial statistical information such
as a hierarchical order of statistical moments or correlation func-
tions. Existing models on morphologies of random materials ba-
sically follow two directions: translation models and correlation
models, which are described in the sections that follow.

1.1 Translation Model. Even if the multivariate distribution
of a stochastic process is fully known, no direct methods are avail-
able for simulating such a process in general. Among the few that
can be simulated, most are directly tied to Gaussian multivariate
distribution, and the rest either present formidable computational
problems or are too restrictive to be of general interest [8]. The
translation model, pointwise transforming a Gaussian random
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field into a non-Gaussian one, was first studied in Gaussian input
nonlinear systems in the field of signal processing in the 1950s,
and was mathematically developed in the bivariate translation sys-
tem [10]. The model was applied to multivariate systems [11],
porous media [7,12-14], random materials [15-18], and general-
ized to level-cut filtered Poisson fields [19]. The translation model
has two limitations: the inflexible multivariate distribution struc-
ture, and the requirement of non-negative definiteness of the un-
derlying Gaussian process, which limit the applicability of the
model [20,21]. These restrictions have been further observed in
Ref. [22], where for general real-life random media morphologies
the translation model does not often meet the requirement of non-
negative definiteness. This presents a major challenge in applying
translation models to random media; in fact, for many random
media, such models are inadequate to accurately represent the
microstructural features such as shape or connectivity.

1.2 Correlation Models. Making use of correlation functions
to approximate a target multivariate distribution alleviates many
of the limitations described above. With correlation models, a
morphological characterization problem involving randomness is
effectively converted into a numerical optimization problem. The
relationship between nth-order statistics and random images was
investigated early in vision research [23], and afterwards the
second-order statistics, i.e., gray-level co-occurrence models,
were extensively applied to texture analysis and image processing
(Ref. [5] and references therein). In random media research, cor-
relation models and relevant simulation techniques were given
attention only recently [9,24], and then were applied to simulation
of particulate media [25] and microstructures [26].

With respect to the characterization issue, correlation models
effectively translate morphological information into a hierarchical
order of correlation functions. Meanwhile, estimation of correla-
tion functions from a target configuration is also straightforward.
In this regard, however, there accompany some interesting and
challenging questions, i.e., how and which order of correlation
functions connects with what characteristics of a specific mor-
phology, and which is the lowest order of correlation functions
that is sufficient for a certain level of engineering approximation,
such as effective physical properties. These questions will be ad-
dressed with some conjectures in the numerical examples and
conclusions of this paper. There is also a relevant uniqueness
problem first posed as Julesz conjecture [23,27], i.e., whether the
first two orders of statistics are adequate to visually determine a
texture. Intricacy of this uniqueness problem is mainly due to
ambiguous definition of texture and the conceptual confusion be-
tween ensemble statistical correlation functions and single sample
deterministic correlation functions, as pointed out in Ref. [28]. In
the field of material simulation, the same ambiguity could lead to
unsuccessful applications of correlation models, as noted in Ref.
[29].

The simulation issue, i.e., how to realize a configuration sample
based on given lower-order correlation functions, is an interesting
inverse problem and a global optimization problem. For the case
of multiphase materials, the problem more specifically becomes
that of combinatorial optimization. It is worth noting that the op-
timization algorithm based on the full range of the second-order
correlation function from a single sample leads to deterministic
image reconstruction, a problem intensively pursued in the field of
optics [30]; however, they are of no interest for stochastic simu-
lation and characterization of a random medium [31]. Short-
range-correlation matching allows a morphology to vary ran-
domly from sample to sample, by relaxing the requirement of a
strict match between the correlation functions of the original
sample and that of the simulated sample.

2 Short-Range-Correlation Model

The idea of short-range-correlation matching first appeared in
texture synthesis [32] for the purpose of information reduction. A

061001-2 / Vol. 75, NOVEMBER 2008

recent application of the idea is on random image simulation [33],
where effectiveness of the method was not fully demonstrated due
to utilization of incomplete windowed correlation functions. A
crucial point of the SRC model is application of windowed corre-
lation functions, assuming long-range independence of morpholo-
gies. Such an assumption is justified when considering the differ-
ence between the ensemble (or true) correlation function and the
sample correlation function of a stochastic process. For instance,
the ensemble covariance function (normalized second-order cor-
relation function) will typically decay to zero as the lag vector
becomes larger, while the sample covariance function may be sig-
nificant even at long range. These apparent long-range dependen-
cies are not true correlation values, but they are the result of
numerical error arising from a finite sample. By windowing the
correlation, only the important values of the estimated correlation
function are retained, providing a more appropriate basis for es-
tablishing the energy (or error) of a simulated sample morphology.
This concept of short-range dependence is tied to those of corre-
lation length in stochastic process theory, neighborhood systems
in Markov random field theory, textural resolution in texture
analysis [32], local roving window in vision research [34], and
stochastic representative volume element (SRVE) in random me-
dia study [35].

2.1 Markov and Gibbs Random Field Theory. To be con-
sistent with the computer simulation scheme and the usual image
processing modeling, the SRC morphological model in this study
is built onto a two-dimensional discrete lattice. Let S={i|1<i
<M,-M,} index a discrete set of sites for a morphological set X
on a rectangular lattice M| X M,. In Markov random field theory,
a neighborhood system N means only neighboring sites or so-
called cliques have direct interactions on each other. The condi-
tional probability of the value x; is therefore conditioned only on
its neighborhood system NCS

P(xi|xs—(i}) = P(xi|xNi) (1)

where the subscript S —{i} indicates the full lattice excluding site .
The equivalence of Markov and Gibbs random field models,
known as the Hammersley—Clifford theorem [36], makes statisti-
cal physics and spatial statistics closely linked. The set X becomes
a Gibbs random field on S and has a Gibbs multivariate distribu-
tion

e—U(x)/T
PY)=5——— )
E U
xeX
where the energy U(x) is defined as
N,
U(x) = 2 V,(x) (3)

n=1

N, is the number of order of statistics to be included in the energy.
The nth-order potential V,(x) will be defined further in the next
section. The “temperature” 7 in Eq. (2) is a parameter related to
the desired configuration. For example, if T— %, X tends to be
equally distributed, assigning a large number of morphological
configurations approximately equal probabilities, and if 7—0, X
tends to concentrate at a specific value, assigning significant prob-
ability only to the global energy minimum. With given 7" and
V,(x), we can generate a specific morphological pattern by sam-
pling the configuration space X according to the distribution (2).

Note that in the current work the nth-order potential is equiva-
lent to an error norm that measures differences between the
nth-order statistics in the original morphology and the simulated
morphology. Staying consistent with the nomenclature used in the
field of image analysis [4], however, this error norm will be re-
ferred to as energy in the current work.
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2.2 Short-Range-Correlation Energy. In order to develop
an expression for the energy norm U(x), the n-point correlation
function S,(ry,...,r,) is used, which is defined as

S,y ot = D X x,P(x) (4)

xeX'

In Eq. (4) ry,...,r, denote the spatial coordinates of the points
l,...,n in the configuration x, the set X’ of which constitutes a
finite window in the lattice. Application of such a window is
equivalent to truncating to zero the value of the correlation func-
tion for all spatial coordinate pairs ry,...,r, that fall outside the
finite window size. Applying such a finite window indicates that
the correlation information within the window is not altered at all,
but the correlation function outside of the window is set to zero.
An advantage to applying this truncation as opposed to a moving-
average filter to the correlation function is that the slope at the
origin of the two-point correlation function is preserved to simu-
late the specific surface, an important morphological feature.
Other common moving-window functions such as Bartlett, Han-
ning, Gaussian, etc., are not considered in this study since these
windows can distort the short-range-correlation information.

For ergodic and homogeneous random fields up to the nth or-
der, as assumed in this study, S, can be estimated from a single
configuration as

! E x(8)x(r, —ry +8)x

I _rl) =
" M, - My G2

Sn(rz—rl, .

X(rzs—r +8)--x(r,—r;+s) (5)

In Eq. (5), when the sites at which x is evaluated fall outside of the
rectangular lattice M X M,, either periodic conditions or other
appropriate conditions can be applied. A closely related definition
is the nth-order statistics P,(x;,x,,...,X,) Or n-gram statistics,
which is also termed as gray-level co-occurrence in textural analy-
sis. Obviously the information contained in the n-point correlation
function is a subset of that of the nth-order statistics.

The characteristics of a Gibbs random field are specified by
appropriate formulation of the nth-order potential V,(x), while
noting that sometimes different potential functions could lead to
the same Gibbs distribution. In the SRC model, we define the
potentials as metric norm of a distance between two windowed

correlation functions, such as a simulated one §n and a target S,,.
The first-order potential makes use of the first-order statistics, or
the full histogram f, not simply the mean value. For multiphase
materials, x takes values from a finite set D of gray levels, e.g., for
two-phase materials D={0,1}. The first-order potential is there-
fore defined as

Vi) = al[ S i) —f<xi)|ﬂ} v ©)
xieD

where D is the set of possible gray levels in the multiphase ma-
terial. The second and third orders of the potentials are given
below and the rest follow the trend.

N, 1/p
Vy(x) = ay E |S5(r —1;) = §2(ri’ -1 (7a)
{ii'}
N3 lp
V3(x) = a3 2 |S3(r; =11y = 1) = §3(ri’ —r,r =)
{ii" "}
(7b)

In Egs. (7a) and (7b), 1<p<oo, N, indicates the pair set of the
SRC window, Nj indicates the triple set of the SRC window, and
ay, a,, and ay are coefficients used to manipulate the contribu-
tions of each order of statistics to the total energy. For example,
a3 may be set to zero if only the first- and second-order statistics
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are to be matched in the simulated morphology.

Let a function d,(¥,x)=U(X) denote the distance between any
two configurations x,Xe X, i.e., d,:XXX—NR taking pairs of
morphological configurations into real numbers. In order to make
use of the SRC energy in subsequent simulations it is important to
establish first that it is truly a metric.

THEOREM. The short-range-correlation energy function d,:X
X X— R, as defined in Egs. (4), (7a), and (7b), is a metric on the
morphological set X.

Proof. By the definition of metric, there are four sufficient and
necessary conditions:

(i) d,(x,%)=0 for every x,¥e X

(i) d,(x,%)=0 if and only if x=%

(i) d,(x,X)=d,(%,x) for every x,¥e X

(iv) d,(x,%)<d,(x,%')+d,(X",X) for every x,%,%¥" € X

Conditions (i)—(iii) are directly obtained from Egs. (7a) and (7b),
and Condition (iv) is derived by using Minkowski’s inequality
[37]. |

Clearly for a finite set D a metric space (d,,X) is the €, space,
and as seen in Sec. 3 we confine algorithms to the €, space that is
convenient for numerical operations. Having established a metric
for the SRC energy of a given morphology, an appropriate sam-
pling process must be established for generating simulated mor-
phologies.

2.3 Sampling Process. In Markov/Gibbs random field mod-
els, there are two well-established random sampling algorithms.
The Metropolis sampler [38] uses a Monte Carlo procedure to
generate a Markov chain of configurations, and acceptance of
each configuration change is based on Eq. (2). The Gibbs sampler
[39] generates the next configuration using conditional probability
(1) instead of energy change. Both sampling algorithms have the
Gibbs distribution as equilibrium, as illustrated from the perspec-
tive of the Bayesian paradigm of maximum a posteriori (MAP)
estimation [40]. Based on an initial configuration x), usually be-
ing white noise, the maximum problem is written as

P(x© |x) P(x)

P(x) ®

max P(x|x®) = max
X X
Since white noise x¥) can be generally treated as independent
from the desired configuration, i.e.,

P(xVx) = P(x) )
then Eq. (9) becomes

(1/T)U(x) (10)

max P(x\x(o)) ~ max P(x) = max e~
X X X
Therefore, generation of a desired configuration corresponds to
minimization of the energy U(x) in Eq. (2) with a fixed tempera-
ture 7.
The Metropolis algorithm for finding the maximum probability
in Eq. (10) is the following:

(a)  given target histogram f and correlation functions S,,n
=2.3,...

(b)  set SRC window size to be used for energy calculation

(¢) initialize white noise x©

(d)  calculate the initial SRC energy U(x'?)) using Egs. (3),
(7a), and (7b)

(e) iteration step for configuration m

(i) generate x based on perturbation of x("~1

(ii) calculate the SRC energy U(x") using Eqs. (3), (7a),
and (7b)

(i) AUM™=U(x™)-U(xm=)

(iv) g=min{1 ,e‘AU{m)/T}
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(v) if uniform [0,1]>g, then go to (i) to try another x;
otherwise, x is accepted and go to (e) for next itera-
tion m+1

(f)  until a prescribed criterion, i.e., equilibrium is reached.

Steps (iv) and (v) of (e) above allow the algorithm to escape
from local minima in an attempt to reach the global minimum.
When temperature is scheduled to cool down gradually to zero,
the combined scheme is known as simulated annealing. This
scheme requires significant computing time and is not necessary
for the morphological simulations performed here. As mentioned
earlier, the global minimum of the energy occurs when the mor-
phology exactly matches the original morphology (i.e., determin-
istic reconstruction). Strict application of steps (a)-(f) with the full
range of correlation functions would lead to such a deterministic
reconstruction. For morphological simulation using the SRC
model, the objective is to find many qualified local minima as
desired configuration samples, and an absolute global minimum is
not needed. In this work, we use short-range-correlation functions
and a freezing temperature, resulting in a simple and fast algo-
rithm, which modifies the Step (€) above as follows:

(e) iteration step for mth configuration

(i) generate x' based on perturbation of x~1)

(ii) calculate the SRC energy U(x") using Eqs. (3), (7a),
and (7b)

(iii) AU™=U(x")-U(x"=V)

(iv) if AU™ >0, then go to (i) to try another x™): other-
wise, x is accepted and go to (e) for next iteration
m+1

There are two important algorithmic issues remaining in Sub-
step (i). The first issue is that of choosing from two possible
branches in the Metropolis algorithm, spin-flip or spin-exchange.
The spin-exchange approach, say in a two-phase medium, pro-
ceeds by exchanging two sites in different phases in each pertur-
bation, which always keeps a fixed volume fraction. Alternatively,
the spin-flip method flips the phase at a single site individually,
allowing the volume fraction to vary from perturbation to pertur-
bation. Spin-flip has been shown to be generally more efficient
than spin-exchange in texture analysis [41]. Also, in real material
samples, the first-order marginal distribution or histogram in Ref.
[6] is not deterministically constrained. Therefore spin-flip natu-
rally fits the SRC model. The second issue pertains to the proce-
dure to select spin-flip sites, i.e., random scanning, periodic scan-
ning, or raster scanning. In this study we choose random scanning
that was demonstrated to be most effective in Ref. [32].

The most computationally demanding part of the algorithm de-
scribed in Refs. [11,12] is the calculation of the second- and third-
order correlations that are used to calculate the SRC energy (Sub-
step (ii). Because of this, the most efficient updating schemes for
the second- and third-order SRC models are needed. The pair and
triple correlation functions can be computed for a morphological
configuration x, using the fast Fourier transform [42]

S,(r) = IFFT2{|i(w)|*} (11a)

S3(ry,1p) = IFFT3{%(@)i(,) (@) + e,)} (11b)
where superscript * denotes the conjugate complex, IFFT2 de-
notes the two-dimensional inverse fast Fourier transform, IFFT3
denotes the three-dimensional inverse fast Fourier transform, and
() is the fast Fourier transform of the sample x(r)

X(w) =FFT2{x(r)} (11¢)

Equation (11b) requires a significant amount of computing
memory, and direct calculation of the triple correlation function is
computationally feasible only for small window sizes. During
spin-flip iterations an alternative updating scheme for fast com-
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puting of the SRC energy at Substep (ii) is available, an idea
which was also applied in Refs. [43,44]. When there is a spin-flip
at site xX")(r) in an image of resolution M| X M,, the covariance
function (normalized second-order correlation function) can be
updated as

1 2 2
C(m+1)(A) - W{c(m)(A) . (¢(m) _ ¢(m) ) + ¢(m)
2x"(r) -1
+ W . [x(m)(r +A)+ x<’”)(r -A)]
1° 2
_ ¢(m+ 1)2} VA#0 (12&)
1 2 2
C(m+l)(0) — W{C(m)(o) . (qg(m) _ ¢(m) ) + ¢(m)
2x"M(r) -1
+ ;I(r)lu__qg(mﬂ)z} (12b)
1° 2

where ¢ denotes volume fraction and A denotes the correlation
distance. Compared to the fast Fourier transform in Egs.
(11a)—(11c) taking O(M M, log M ;M,) multiplication operations,
the updating schemes (12a) and (12b) require only O((2L;+1)
X(Ly+1)) operations, where L; and L, are the dimensions of a
rectangular SRC window in the M X M, domain of the morphol-
ogy. For a 256 X256 image with SRC window size L;=L,=10,
the ratio of computing efficiency can be as large as 18,157.

The updating scheme for the third-order correlation function is
given as follows:

STD(ALAY) = SV(ALAY) + (207 (r) = 1) - [x™(r + A ™
X(r+Ay) +x"(r = ADx"(r— A, +A,) +x™
X(r-A)x"(r-A,+A)] VA #0VA,

#0A, # A, (13a)

SY*(A1,0) = SY(A,0) + (2x"(x) = 1) - [x")(r + A}) +x")
X(r—A)] VA #0 (13b)

SUmD(0,A,) = ST (0,A,) + (207 (r) = 1) - [x")(r + Ay) + x
X(r-=A)] YA, #0 (13¢)

ngﬂ)(A,A) _ ng)(A,A) + (me(l‘) _ ]) . [x(m)(r + A) +x(m)
X(r-A)] VA#0 (13d)

SUmD(0,0) = $97(0,0) + (2x"(r) - 1) (13¢)

For each cycle of spin-flip throughout the whole domain of an
image, the third-order simulations (13a)—(13e¢) require
O(MM5(2L+1)*(L,+1)? multiplication operations, (2L;+1)
X (L,+1) times that required for the second-order model.

3 Numerical Simulation of Biphase Disordered
Materials

For biphase disordered materials, specifically, the information
of the nth-order correlation functions is equivalent to the nth-order
statistics [45]. The first two order statistics are therefore simply
the volume fraction ¢ and the autocorrelation function S,. In this
study, we choose volume fraction ¢ and the covariance function

52(11’12) - ¢2
b~ ¢

as parameters for the second-order SRC metric function (follow-

ing Egs. (6), (7a), and (7b))

C(ll’ZZ)z (14)
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@' 43" t.1y)
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Fig. 1 Half window used in the calculation of energy (Egs. (15)
and (16)) in SRC formulation

Ly Ly

> D ICUL) - ClL )P

=L, 1,=0

U2=a1¢+a2 (15)

Note in Egs. (14) and (15) that [, and [, refer to coordinates, as
shown in Fig. 1. The size of the short-range window (2L; X 2L,)
is a parameter that can be set in accordance with the target mor-
phology. The effect of this window size will be discussed for
specific examples later in this section. Results are complete using
only half a window (2L; XL, in Eq. (15)), due to the center-
symmetry of covariance functions.

For the third-order SRC model, we simply let a;=a,=0 and
a3 =1 in the simulation. Biphase processes represent a special case
where the third-order correlation function contains all information
about the first two orders of statistics. Therefore, there is no loss
of information in discarding the first two orders in the energy
expression. The energy U; becomes

[
L] . .‘ Py . .*

P2 (128x128)  P3 (256x256)

P1(128x128)

Ly Ly L L

Us= DD D XISl = Sy Ll P

h==Ly =0 1= 1}=0

(16)

We will see that formulation (16) produces improved simulation
quality over the energy norm U, contained in Eq. (15), as will be
demonstrated by the examples in Sec. 3.2.

Six morphological patterns from P1 to P6 (Fig. 2) indicated
with corresponding resolution are chosen as target configurations
for numerical simulation. In the simulation process, periodic
boundary conditions are prescribed. The criterion of iteration in
Step (f) for the second-order SRC model is to run until there is no
spin-flip allowed. For the computationally demanding third-order
model, the iteration stops when the energy curve becomes close to
flat, typically after five cycles of random scanning in our ex-
amples.

3.1 Effect of SRC Window Size. Pattern P2 shows a number
of identical circles randomly distributed in a matrix, which corre-
sponds to such random materials as fiber-reinforced composites.
The lattice M| X M,=128 X 128 and the radius of the circles is 4.
To study the effect of window size in the second-order SRC
model, we choose L;=L,=L (Eq. (15)) being 1, 5, 10, 15, 20, 30,
and 63, respectively. We set @;=0.7 and a,=1.0 for all the win-
dow sizes, in order to allow the volume fraction to deviate slightly
from sample to sample. Resulting samples are shown in Fig. 3,
which demonstrate that the volume fraction is close to the target
value except for the SRC window size L=63.

In Fig. 3 the best visual match (i.e., most circular shaped inclu-
sions) appears when the SRC window size L is 10, 15, or 20,
which is approximately two to three times the correlation length
of the target configuration (Fig. 4). The interpretation is that too
small a window size contains insufficient morphological informa-
tion, while too large a window size beyond the correlation length

Rl =N K TN
AT
PN A~ ]

P4 (256x256) P35 (256x256) P6 (128x128)

Fig. 2 Specific morphologies studied in this work

L=15 (¢=0.1606)

L=20 (¢=0.1765)

L=30 (¢=0.1758)

L=63 (¢=0.2443)

Fig. 3 The second-order SRC model for P2 with different SRC window
sizes (ay=0.7, a,=1.0), with the respective volume fraction for each sample
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Fig. 4 Sample (target) covariance of P2: (left) profile; (right) contour

would include inaccurate information that pollutes the numerical
optimization. Figure 5 shows the results of a simulation based on
PS5, which gives an even more striking representation of the win-
dow size effect. For the results in Fig. 5, it appears that none of
the samples from the second-order simulations are a very good
match. The window size of L=10 comes the closest in matching
the pattern. Similar to the results from P2, this is approximately
two times the correlation length of the original sample. These
results show that for both patterns, a window size of approxi-
mately two to three times the correlation length of the original
sample is needed to obtain good quality samples. The results from
Pattern P5 show that for some microstructures second-order sta-
tistics are insufficient to represent key microstructural features.
Therefore, extension to third-order statistics is addressed in the
next section.

3.2 Third-Order SRC Model. Figures 6 and 7 show sample
simulations based on Patterns P4 and PS5, respectively, using the
third-order SRC model (Eq. (16)). There is a window size effect
similar to the second-order results in the third-order SRC model,
as shown in Figs. 6 and 7. In other words, window sizes close to
two to three times the correlation length of the original configu-

\ @
7 )
VEAIRYa

Fig. 5 Second-order simulation for P5 with different

(4=0.3, a»=1.0)

L=15

Target

ration still remain the optimal selection. Generated samples of
P1-P6 are shown in Fig. 8 in order to provide a comparison be-
tween the second-order and the third-order results. The results
corresponding to P1 show that second-order statistics are suffi-
cient to represent the microstructural features. For the case of P2,
the structural feature of separate circles becomes clearer in the
third-order simulation. More obviously for the case of P3, the
circular shape and distinct sizes of the inclusions are effectively
reconstructed from the third-order simulation, where the second-
order simulation fails. For P4 and PS5, the third-order samples
become much more improved and visually closer to the respective
targets. P6 shows improvement in the samples when using a third-
order rather than a second-order simulation; however, even the
third-order simulation is insufficient to reflect such quantities as
connectivity and percolation. In this simulation process, except for
P2 (128 X 128) where L=10, the window size for the other five
(256 X 256) is chosen as L=15.

As observable in Fig. 8, there is noise appearing in the third-
order simulation samples. A denoising procedure is therefore de-
veloped by simply placing a third-order simulated sample as an
initial configuration for a subsequent second-order simulation.

Fig. 6 Third-order simulation for P4 with different SRC window sizes

N —
xWﬂ

oo W Y
BN _‘w

A
Ay

o
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ot

"a i‘}\ ;
‘crf%# 2R

Fig. 7 Third-order simulation for P5 with different SRC window sizes
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P1

P2

P3

P4

PS5

P6

Target 2"order 3™.order denoised 3™-order

Fig. 8 Samples generated based on Patterns P1-P6, using the second-
order SRC model (a;=0.7, a,=1.0, a3=0), the third-order SRC model (a;
=a,=0, a3=1.0), and the denoised third order SRC model

The effectiveness of the procedure is illustrated with the denoised K K K K
samples shown in Fig. 8. To numerically interpret the procedure, E 2 2 E IS5(11, L 10, 1) = S5(1, L3 10, 15) 2
the normalized energies E, and E; for samples before and after 1=Ky =0 /' /=0
denoising are listed in Table 1, where E, and E5 are defined by E;= K] IKZ —
1 2 1 2
e DI NN N
S~ L==K1 h=0p'—_g, 1})=0
> 265 - L) e
1=K, 1,=0 (18)

E,= (17)
’ Ko K It is observed from Table 1 that the noise is mostly due to the
E 2 |C(1,.5) second-order energy E,, which can be obviated by minimizing E,
1j=-K} 1,=0

Table 1 Denoising

p2 P4
Third-order Denoised procedure Third-order Denoised procedure
simulation ((15a)—(15¢)) (3rd+2nd) simulation ((15a)—(15¢)) (3rd+2nd)
E, 0.1071 0.0078 0.1553 0.0041
Es 0.0223 0.0555 0.0050 0.0195
Journal of Applied Mechanics NOVEMBER 2008, Vol. 75 / 061001-7
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Fig. 9 Evolution of energy (error) in sample generation of P5: (a) second-order SRC model; (b) third-order SRC

model

with the compromise of a slight increase in Ej.

The above examples reaffirm that there is morphological infor-
mation that the second-order statistics miss and that can be re-
trieved from higher-order statistics.

The simulation process for P5 is graphed in terms of normal-
ized energy in Fig. 9 for the second- and third-order SRC models,
respectively, showing that the results converge rapidly. The com-
puting time of a Pentium 4 CPU for different sample sizes and
SRC window sizes is listed in Table 2. For a 256 X 256 image, the
second- and third-order simulations would typically take about
30 s and 2 h per cycle, respectively, for window size L;=L,=10.
The magnitude of the time ratio is consistent with our estimate of
operations in Sec. 3.1. Clearly, the third-order simulations come at
a computational cost that must be balanced with the microstruc-
tural features that must be retained in the simulations.

4 Classification of Morphologies Based on the SRC
Model

Many model-based techniques have been developed for pattern
recognition of morphologies in texture analysis and image pro-
cessing. This section is to initiate a generic method based on the
SRC model for classification of morphologies, following the ob-
servation of Ref. [43] that second-order statistics can represent
homogeneous textures such as P1, but have difficulty modeling
structured textures (e.g., P2-P6). From the simulation examples
graphed in Fig. 8, it is conjectured that the degree of structural
complexity should be closely connected to a hierarchy order of
statistics, i.e., the more complex the structural features are, the
higher-order statistics that must be involved. For non-Gaussian
translation processes, the first two orders of statistics are complete
for representation (i.e., the process is completely defined by the
probability density function and the two-point correlation func-
tion). As a result, non-Gaussian translation morphologies are not
successful at retaining highly structured features of the morphol-
ogy, such as shapes [22]. Morphologies that are predominantly
controlled by the second-order statistics, and could therefore be

Table 2 Computing time per cycle (Pentium 4 CPU 1400 MHz)

256 X 256 resolution 128 X 128 resolution

L=5 L=10 L=15 L=5 L=10 L=15
Second 26.0 s 29.6 s 352s 6.9 s 74 s 8.7s
order
Third 32min 122 min 276 min 14 min 29 min 84 min
order

061001-8 / Vol. 75, NOVEMBER 2008

appropriately described as translation morphologies, are referred
to as nonstructured morphologies. P1 is a sample of such a mor-
phology (Fig. 8).

For those morphologies mostly controlled by second-order sta-
tistics but still having observable structural features, we categorize
them as lowly structured morphologies. One example is P2 in Fig.
8, where the second- and third-order simulation samples are simi-
larly acceptable. For the cases of P3—P5 in Fig. 8, the third-order
simulation samples are generally acceptable for visual similarity,
while second-order statistics are inadequate to capture important
morphological information. This class is referred to as medium
structured morphologies, and it is thought that most real-life mor-
phologies belong to this class. The class of highly structured mor-
phologies refers to those morphologies that require an order of
statistical modeling beyond third order. The example is P6 for
which the third-order model has difficulty capturing connectivity
and percolation [46]. Further statistical modeling efforts would be
an important direction, since percolation and connectivity have
wide applications in material and porous media fields, such as
stochastic fibrous networks, membrane, porous rocks, etc.

5 Conclusions and Discussion

In this study, a short-range-correlation model is proposed in the
framework of Markov and Gibbs random field theory to quantify
random morphologies in metric space. A robust simulation proce-
dure is established for morphologies of multiphase random media
by using the Metropolis spin-flip algorithm. Through development
of the SRC model, several issues of conceptual clarification are
emphasized below.

e Stochastic simulation versus deterministic reconstruction.
Stochastic simulation of random media using correlation
models should be based on windowed correlation functions,
i.e., focusing on spatially correlated information and assum-
ing long-range independence. Utilization of full-range cor-
relation functions would conceptually lead to deterministic
reconstruction of the original configuration.

e Statistical correlation functions versus sample (determinis-
tic) correlation functions. A uniqueness relationship exists
between an image and its deterministic correlation func-
tions. This issue is related to the first issue; in order to
simulate samples that are close in the SRC metric space, the
deterministic correlation functions describing the target con-
figuration should be free to vary at long range.

e nth-order statistics versus nth-order correlation function.
The latter is a subset of the former. Two-phase random me-
dia are a specific case where the two become equivalent.

e Spin-flip versus spin-exchange. The Metropolis spin-flip al-
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gorithm greatly improves simulation efficiency by relaxing
the first-order statistics. In other words, the volume fraction
is not a rigidly fixed quantity, which might better reflect the
nature of variability observed from one material morphol-
ogy to the next.

From the simulation examples, we have the following observa-
tions.

*  Morphological configurations close to each other in lower-
order metric space tend to be visually similar, and the degree
of similarity depends on the level of structural complexity in
a morphological pattern;

* Second-order statistics give a global pattern, and are suffi-
cient for unstructured and perhaps lowly structured mor-
phologies (e.g., P1 and P2), but miss local structural features
of structured morphologies that are important for many
physical properties.

e Third-order statistics retrieve most local structural features
and provide visual similarity for a large class of morpho-
logical patterns (e.g., P3-P5).

* For highly structured morphologies (e.g., P6), higher-order
correlations than the third-order correlation function become
necessary to capture connectivity and percolation properties.

* An interesting finding is that the SRC model can effectively
simulate nonuniform patterns of inclusions such as P4 that
has circles with two different diameters.

Based on the observations, we make the following conjectures
concerning those intriguing morphological questions posed in
various research fields (e.g., 1):

1. Are there configurations close in nth-order statistics but dif-
ferent in (n+1)th-order statistics? Yes, if generated in the
context of windowed spatial statistics. One obvious example
is the case of P3 in Fig. 8. The sample simulated with the
second-order SRC model closely matches the target second-
order statistics (Eq. (17)), but obviously it has failed to cap-
ture much of the third-(Eq. (18)) and higher-order statistics.

2. Is morphology completely modeled by a hierarchical order
of statistics? Yes, the well-known statement is confirmed by
the numerical analysis performed in this study; i.e., morpho-
logical information can be translated into a hierarchical or-
der of statistics. The higher order of statistics that are
known, the more detailed are the morphological features that
are retrievable.

3. Which is the lowest order of statistics for engineering inter-
ests? Visual inspection of the results suggests that the third-
order SRC model might be sufficient for many random me-
dia engineering problems (such as effective properties),
except for those of percolation models. Future numerical
evaluation of physical properties based on samples simu-
lated by using the third-order SRC model is expected to
verify this conjecture.

4. What morphologies have the same lower-order statistics but
widely different effective properties? Lower-order statistics
are insufficient to model highly structured morphologies that
have small volume fractions and percolation properties. The
example is P6 where the third-order simulation sample still
lacks the appropriate connectivity properties.

As research interests of random media focus on physical prop-
erties, future work in the SRC modeling would continue in this
direction by covering the following topics.

* Find a method to determining the optimal SRC window size
for different types of morphologies and more detailed work
of numerical analysis and relevant convergence study is ex-
pected on the topics of window sizes and correlation order.

* Optimize the third-order energy formulation of Eq. (16) in
dealing with different classes of morphologies.

Journal of Applied Mechanics

* Exploit applicability of the SRC model on highly structured
morphologies such as stochastic fibrous networks.

e Investigate the relationship between resolution and simula-
tion quality, and conduct multiresolution simulation to re-
duce computing time.

¢ Investigate the relationship among visual, morphological,
and physical properties by numerically evaluating morpho-
logical features and physical properties of samples gener-
ated by the SRC model.

e Evaluate third-order bounds of effective properties by using
the third-order SRC model for various morphologies classi-
fied in Sec. 4. Relevant work includes those on level-cut
Gaussian random fields [18,47,48].

e Conduct a computationally demanding third-order three-
dimensional simulation and develop a parallel computing
algorithm.

e Conduct real materials statistical measurement and testing
[49,50].

We also note that third- and higher-order statistical simulations
of stochastic processes are an important direction. Simulation of
non-Gaussian processes is generally limited to first two orders of
statistics [51-56]. It is expected that the SRC model introduced in
this study can be extended to simulation of general stochastic
processes.
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Constructing Multilayer
Feedforward Neural Networks to
Approximate Nonlinear Functions
in Engineering Mechanics
Applications

This paper presents a major step in the development and validation of a systematic

JIH-SOHQ Pei prototype-based methodology for designing multilayer feedforward neural networks to
Assistant Professor model nonlinearities common in engineering mechanics. The applications of this work

School of Civil Engineering include (but are not limited to) system identification of nonlinear dynamic systems and
and Enywonmental Science, neural-network-based damage detection. In this and previous studies (Pei, J. S., 2001,
University of Oklahoma, “Parametric and Nonparametric ldentification of Nonlinear Systems,” Ph.D. thesis, Co-
Norman, OK 73019-1024 lumbia University; Pei, J. S., and Smyth, A. W., 2006, “A New Approach to Design

. . Multilayer Feedforward Neural Network Architecture in Modeling Nonlinear Restoring

Eric C. Mai Forces. Part I: Formulation,” J. Eng. Mech., 132(12), pp. 1290-1300; Pei, J. S., and
Honors Underg.ra'duateIStud.ent Smyth, A. W,, 2006, “A New Approach to Design Multilayer Feedforward Neural Net-
School ,OfC'V” Englngerlng work Architecture in Modeling Nonlinear Restoring Forces. Part II: Applications,” J.
and Environmental Science, Eng. Mech., 132(12), pp. 1301-1312; Pei, J. S., Wright, J. P, and Smyth, A. W., 2005,
) Honors College, “Mapping Polynomial Fitting Into Feedforward Neural Networks for Modeling Nonlin-
University of Oklanoma, ear Dynamic Systems and Beyond,” Comput. Methods Appl. Mech. Eng., 194(42—44), pp.

Norman, OK 73019-1024 4481-4505), the authors do not presume to provide a universal method to approximate

any arbitrary function. Rather the focus is given to the development of a procedure which
will consistently lead to successful approximations of nonlinear functions within the
specified field. This is done by examining the dominant features of the function to be
approximated and exploiting the strength of the sigmoidal basis function. As a result, a
greater efficiency and understanding of both neural network architecture (e.g., the num-
ber of hidden nodes) as well as weight and bias values is achieved. Through the use of
illuminating mathematical insights and a large number of training examples, this study
demonstrates the simplicity, power, and versatility of the proposed prototype-based ini-
tialization methodology. A clear procedure for initializing neural networks to model
various nonlinear functions commonly seen in engineering mechanics is provided. The
proposed methodology is compared with the widely used Nguyen—Widrow initialization to
demonstrate its robustness and efficiency in the specified applications. Future work is
also identified. [DOI: 10.1115/1.2957600]

1 Introduction network community that both analytic and heuristic approaches
L ) are still in need of ideas to guide practical applications of function

L1 Motivation. The initialization of neural networks is the — a55r6ximation. With no exceptions, this is also the case in the use
fore;most step in training them to approximate f“““@!“- This  4f neural networks in engineering mechanics to simulate and iden-
critical step affects both the speed and precision of training con- tify nonlinear functions, especially in the applications of structural

vergence, as .e\.ll_depce(_i 10 previous studies (e.g., Ref. [l].) - This health monitoring and damage detection [15,16]. According to
challenge of initialization exists for both static and dynamic neu- . . .
previous studies [1,12], such a fundamental problem might be

ral networks [2]. The universal approximator theorem [3,4] has hard to overcome in a general sense and thus may only be ad-

proven the feasibility of function approximation but has not of- > :

fered a constructive solution for neural network initialization. dresseq properly by lgoklng into the features of the function to.be

Other noteworthy existing efforts include methods built on a good ~ aPProximated or, equivalently, the features of the error function
surface. This philosophy lends itself to a direction of seeking ef-

understanding of the capabilities of sigmoidal functions [5-9], ¢ . : ; L oS
methods utilizing the features of the function to be approximated ~ fective domain-specific solutions for neural network initialization.

[1,8], constructive methods [5,10,11], and many more (e.g., those ~ Therefore, this study as well as the previous studies that it is built
summarized in Refs. [12,13]. Reference [14] also provides a sum-  upon [15-18] do not aim for an initialization solution to any ar-
mary of existing initialization approaches that have inspired this bitrary nonlinear function. Rather the effort here is to rationally
study or are closely related to it. connect the understanding of the capabilities of sigmoidal func-
Despite these previous efforts, it is the opinion of the neural ~tions and the domain knowledge of the function to be approxi-
mated to the inner workings of neural networks.
I Throughout this study, the following expressions are adopted
Contributed by the Applied Mechanigs Divis}on of ASME for publication in Fhe for multilayer feedforward neural networks with a logistic sigmoi—
JOURNAL OF APPLIED MECHANICS. Manuscript received May 26, 2006; final manuscript e, . .
dal activation function S, as shown in Eq. (1) below. Furthermore,

received August 26, 2007; published online August 15, 2008. Review conducted by ) : .
Igor Mezic. any given continuous scalar goal/target function g(x) of vector x
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can be approximated by another scalar output function y(x) using
a linear summation [3,4] of sigmoidal functions as follows:

ny, ny,
W .
V) = E} Wy S(Wy X +b)) = 21 T M
= =

where j=1, ...,n;, and n is the number of hidden nodes. Note
that wy j corresponds to input layer weights, b; to biases, and w, ;
to layer weights (IW, b, and LW, respectively in the MATLAB Neu-
ral Network Toolbox [19]). Neural network initialization needs to
address the following issues: (i) number of hidden layers, (ii)
number of hidden nodes in each layer, i.e., the values of n,, ap-
pearing in Eq. (1), and (iii) values of the weights and biases, i.e.,
the values of IW, b, and LW.

1.2 Objectives and Scope. The ultimate goal of the authors is
to develop a set of detailed guidelines with theoretical justifica-
tions for using data-driven techniques such as neural networks in
engineering applications based on (i) the mathematical and physi-
cal insights of the problem to be modeled and (ii) the capabilities
of neural networks in terms of a clear formulation of a linear sum
of sigmoidal functions. The benefits of such an effort are many
and include a more constructive approach for neural network ini-
tialization, more guaranteed training performance, and trained re-
sults with more meaningful interpretations than those obtained
otherwise.

This study aims at substantiating the existing ideas and proce-
dures proposed in a series of previous studies [15-18,20], with
specific focus on applying neural networks to function approxima-
tion within engineering mechanics. The objectives are as follows:
(i) to construct an explicit road map describing the proposed
prototyped-based neural network initialization methodology; (ii)
to develop a set of prototypes which can be used to approximate
ten typical types of nonlinear functions commonly seen in engi-
neering mechanics applications; (iii) to identify the interrelation-
ships of these prototypes in order to streamline the proposed
prototype-based methodology; (iv) to provide training examples
to validate the training convergence and speed of the proposed
initialization methodology, thus demonstrating its usefulness and
power; (v) to analyze the similarities and differences between the
proposed initialization methodology and the widely adopted
Nguyen-Widrow initialization algorithm [6]; and (vi) to provide
practical guidance on the remaining subjective design issues and
shed light on the process of expanding this static neural network
initialization methodology for dynamic neural networks.

Although not entirely arbitrary, the functions to be approxi-
mated in this study are not limited to nonlinear restoring forces, as
previously done [15-18]. Here, the focus is given to approximat-
ing basic nonlinear functions that are widely encountered in engi-
neering mechanics applications such as those seen in the stress-
strain, moment-curvature, and load-displacement relationships, as
well as time histories.

On one hand, this study is focused on memoryless and mono-
tonic functions. Nonlinearities with memory are not treated in this
study since they require different types of neural networks (e.g.,
recurrent neural networks, or multilayer feedforward neural net-
works with high dimensional inputs [2,21]). This study will lay a
solid foundation for these other types of neural networks to build
upon. On the other hand, monotonic nonlinearities are also the
focus of this study. Several existing studies [8,10] have been car-
ried out to analyze strategies for time-history-like nonlinearities
with obvious peaks and valleys. However there is a gap in the
literature on how to approximate ubiquitous monotonic nonlin-
earities using multilayer feedforward neural networks.

2 Proposed Initialization Methodology

2.1 Overview of the Proposed Three-Stage Initialization
Methodology. The central drive of this domain-specific neural
network initialization methodology is to transform an otherwise

061002-2 / Vol. 75, NOVEMBER 2008

ambiguous and thus largely trial-and-error-based procedure into a
clearly defined near-deterministic procedure that can be easily un-
derstood and executed. Before training takes place, this study pro-
poses that three cohesive initialization stages—including Stage I
(selecting prototypes), Stage II (selecting variants), and Stage I1I
(deciding transformation), as outlined in Fig. 1—be implemented.
This is recommended for a typical initialization procedure using a
feedforward neural network with one hidden layer to approximate
a nonlinear function.

The proposed initialization methodology for designing a
multilayer feedforward neural network begins with selecting a
proper prototype according to the main features of the function to
be approximated. This is Stage I. In Stage II, some of the initial
values of the weights and biases and their interrelationships can be
further determined by considering various variants within the se-
lected prototype. If non-normalized, the range of the input and
output is further considered in Stage III by scaling and shifting the
selected variant to complete initialization before batch mode train-
ing takes place.

In the flowchart shown in Fig. 1, both the accomplished work in
this study and the tasks planned for future studies are presented.
Multiple options for initialization exist throughout Stages I, II,
and III, reflecting the highly adaptive nature of multilayer feed-
forward neural networks. However each decision can be made
through a rational procedure, as presented in this study. In prin-
ciple, all the options could be extensively examined to determine
the best initialization strategy as depicted in the iterations of the
three stages. It can be seen that these three cohesive stages explic-
itly address all aforementioned questions on initialization as men-
tioned in Sec. 1.1:

(i) Number of hidden layers: One hidden layer is recom-
mended. This is based on the universal approximator theo-
rem [3,4]. In certain situations, multiple hidden layers may
be a better option than one hidden layer. The initialization
methodology presented here can be generalized to work in
the situations envisioned in Ref. [17].

(ii) Number of hidden nodes in each layer: Generally, a small
number of hidden nodes is recommended, which is de-
rived either through mathematical proofs/reasoning or nu-
merical exercises of linear sums of sigmoidal functions.
This is the outcome of Stage 1.

(iii) Values of the weights and biases: Some predetermined
weight and bias values are recommended to minimize or
avoid using any randomization, such as that employed in
the Nguyen—Widrow initialization [6]. Again, these values
are determined through a progressive and iterative proce-
dure consisting of Stages I-III.

2.2 Understanding Prototypes and Their Variants. The key
elements in this proposed methodology, prototypes and their vari-
ants, are predetermined neural networks that are not obtained
from an inverse formulation of training any data sets. Instead, they
are constructed in advance from a forward formulation based on
either the algebraic or geometric capabilities of linear sums of
sigmoidal functions to capture some dominating features of the
nonlinear function to be approximated in the specified applica-
tions. Preparing prototypes and variants takes time, but can be
done in a forward problem fashion by following a clear procedure.
The resulting prototypes and variants are generic; i.e., they can be
used for numerous individual training tasks through proper trans-
formations (as in Stage III), thus leading to a high overall effi-
ciency in addition to the built-in rationality and transparency in
this proposed initialization methodology.

A qualitative justification for applying a prototype-based ap-
proach for greater success in neural network training can be found
in the balance between global and local search involved in train-
ing. Ideally, training neural networks in function approximation
should belong to the “global search™ category by finding global
minima of error functions. However, currently employed training
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Future Work
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. | - -| Explore additional prototypes

Step 1:
Decide proportioning and
translation if necessary

Step 2:
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Decide scaling if necessary

Batch mode training
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Adjust transformtion?

Yes
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Fig. 1

techniques are normally only “local search” tools [21]. Thus se-
lecting a good initial point for neural network training is critical
since the training process will normally result in trained values
that are still in the neighborhood of their initial values. If domain
knowledge or any other insight of the function to be approximated
could be used to influence neural network initialization, then the
training would more likely converge to the global minimum (in-
stead of just a local minimum), making the trained neural network
more accurate and meaningful. This is the guiding philosophy of
the neural network initialization methodology proposed in this
paper and in previous works related to it [15-18].

To validate and fully develop the proposed neural network ini-

Flowchart to illustrate the proposed prototype-based initialization and growing training technique

tialization methodology, ten types of nonlinear functions appear-
ing in Refs. [22,23] and presented in Fig. 2 are selected as target
functions. These nonlinearities represent typical functions encoun-
tered in the applications of aerospace, mechanical, and structural
engineering.

In this study, specific prototypes for training these nonlineari-
ties are constructed. For the ten types of nonlinear functions speci-
fied in Fig. 2, it is recommended that only three prototypes be
utilized either individually or combinatorially for neural network
initialization. This finding reveals the versatility and efficiency of
the proposed initialization. In other words, it does not always
seem necessary to develop a brand new prototype for each non-

II. Cubic | |lll. Bilinear V. Multi- V.Frac-

1. Linear stiffness || stiffness : tional
slope

and more || and more power

VI. Soften- | | VII.Clear-
. . VIll. Hard || IX.Satu- .
ing cubic | |ance (dead N N X. Stiction
saturation ration
and more space

O e =

va =

e <

| Prototype #1 | | Prototype #2 | |

Prototype #3

| |Prototype#1b+#1c| | Prototype #1b+ #2 |

Fig. 2 Ten types of nonlinear functions commonly seen in engineering mechanics ap-
plications and the recommended multilayer feedforward neural network architectures
(i.e., prototypes) used to train them. Note that the indicated relationships are not

exhaustive.
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Fig. 3 A step-by-step procedure to illustrate the construction of the proposed (a) Prototype 1, variant a, (b) Prototype 2,
variant a, and (c) Prototype 3, variant a. Three variants from each prototype are shown to the right of the procedure.

linearity since a prototype constructed for one nonlinearity might
also work successfully in approximating another. This attractive
feature is evidenced in this study (i) through a graphical “decom-
position” of a complex nonlinearity into a combination of several
simpler nonlinearities whose prototypes have already been identi-
fied and (ii) through numerous training examples. Further theoret-
ical and numerical work is underway to reveal the inner workings
of neural networks to more thoroughly verify, understand, and
utilize this attractive feature of the proposed initialization [24].

2.3 Construction of Prototypes and Their Variants. For the
three prototypes proposed in this study, a constructive step-by-
step procedure is illustrated in Fig. 3. Bear in mind the following:
(i) In constructing prototypes, one needs not strive for an exact
approximation of any target function. Rather, one focuses on
mimicking dominating features of nonlinearities while leaving
fine tuning of the approximation to the training process of neural
networks. (ii) The weights IW and biases b form the basis func-
tions, and the weights LW correspond to the coefficients, as exer-
cised in the previous works [15-18]. (iii) The input and output
ranges in these three prototypes are normalized; handling non-
normalized input and output will be elaborated further in Sec. 2.5.

The basic characteristics of nonlinearities, including softening,
hardening, and oscillatory features, are sought in the construction
of these three prototypes. Referring to Eq. (1), for each individual
term (i.e., each hidden node) used, the built-in nonlinear features
of the sigmoidal function are utilized to reproduce these charac-
teristics by (i) adjusting the weight IW to “zoom” into or out of
the sigmoidal function and (ii) changing the bias b to “slide” the
sigmoidal function to select the right input range. These consider-
ations are the driving force behind the determination of the values
of the weight IW and bias b in an individual term/hidden node.

It can be seen that only three, four, and two terms/hidden nodes
are utilized in the construction of Prototypes 1, 2, and 3, respec-
tively. It can also be seen intuitively that these prototypes are
essentially one sigmoidal term with a constant level of 0.5 re-
moved, a summation of two symmetrical sigmoidal terms with a
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constant level of 1.0 removed, and a subtraction of two similar
sigmoidal terms that share the same center.

Note that in each prototype there are (i) fixed values of weights
and/or biases, (ii) weights and biases in one sigmoidal term/
hidden node with a fixed relationship to those in other sigmoidal
terms/hidden nodes (e.g., pairs of similar sigmoidal terms are of-
ten utilized to produce symmetrical features, which leads to cer-
tain constraints between the selected values for the weights IW’s
and LW’s and/or the biases b’s in different terms/hidden nodes),
and (iii) some weights and biases with truly free values. It has
been seen that combinations with very simple integer coefficients
(such as *1 and *0.5) of just a few terms/hidden nodes are
sufficient to form the nonlinear characteristics. The simplicity of
producing linear sums of sigmoidal functions means that the con-
struction of prototypes involves no tedious calculations. In prin-
ciple, these simple integer values for the weights LW can be made
free and should be fully exploited. However it has been decided in
this study to leave this flexibility neither to the prototypes nor to
their variants (to be discussed below). Rather it is entirely as-
signed to the proposed Stage III to allow for the largely fixed
prototypes to adapt to various options.

Because of the flexibility of some of the weights and/or biases,
there exists a theoretically infinite number of variants, which can
be obtained by altering these values. The right side of Fig. 3
illustrates three possible variants for each proposed prototype for
a normalized input. The values of the weights and biases used
here can be found in Table 1. It can be seen that a single prototype
can yield several variants with distinctive nonlinear characteristics
through the adjustment of the flexible weights and biases. Thus
selecting proper variants is critical and could be subjective. Once
again, the authors do not use a random option when faced with
such a challenge. Rather, a systematic procedure is proposed in
Stage III to limit subjective decisions and make trial-and-error
procedures as rational as possible.

2.4 Decomposition of More Complex Target Functions.
The decomposition of a complex target function refers to the pro-
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Table 1 Values of weights and biases used in

Prototypes 1, 2, and 3. Note that in this table,

normalized inputs and outputs are used. The quantities with * are fixed. The quantities with t
are associated with the constant term [15,18] and are not scaled throughout this study. Also

note the interrelationships between various IW,

b, and LW values.

Prototype Weights in input layer, Biases in input layer, Weights in output layer,
and variant w b Lw
la [5 17-17]" [0* 0* 01" [T -05 -0.5]
1b [T 17=17]7 [0* 0* 01" [1 -0.5 -0.5]
le [20 17-17]" [o* 0* 01" [1 -0.5 -0.5]
2a [55 1711 [5 -5 0° 071" [1T1-1-1]
2b [55 17-17]" [10 —10 0* 0*]" [T 1T -1-1]
2c [10 10 17-17]7 [5 -5 0° 0°]" [1T1-1-1]
3a [10 51" [o o1” [1 -1]
3b [5 171" [0 01" [1 -1]
3¢ [20 10]" [o o1* [1 —1]
1b+1c [1 20 17=17]" [0* 0* 0* 0*]" [T 1 -1-1]
1b+2a [15517-17] [0*5 -5 0* 01" [111-15-15]
1b-2a [1551-17" [0*5 -5 0" 0" [l -1 -1 0.5 0.5]

cedure which converts the function into a summation of simpler
functions that are conveniently related to the proposed prototypes
and their variants. This procedure is required in (i) the selection of
both prototypes and variants and (ii) the stage of transformation
dealing with complex target functions. It is also envisioned that
this technique will be necessary for the expansion of this work
beyond the ten types of nonlinearities studied here.

The forward problem of the construction and exploration of the
prototypes and their variants can be challenging. Furthermore,
matching a target function with prototypes and selecting a proper
variant are inverse problems and can thus be equally challenging,
if not more so. An intuitive approach could be to develop every
prototype or even a full spectrum of variants that could closely
match any typical nonlinearity in engineering mechanics applica-
tions on a one-to-one basis. However, this approach would likely
be neither feasible nor necessary. The number of types of nonlin-
earities can be enormous or even infinite in practice. Thus it might
not be realistic to consider all of them when developing this
prototype-based neural network initialization methodology. The
adaptivity of neural networks, especially in the form of a universal
approximator, should not be overlooked; it would be highly pos-
sible for a limited number of prototypes to suit a great number of
nonlinearities. Section 4.1 further verifies the power of the adap-
tivity of neural networks paired with the proposed initialization
methodology.

Even though the adaptivity of neural networks is fully utilized
in the training process, this study focuses on a design of the ini-
tialization following a foolproof procedure. Here a key technique
is offered to relate a limited number of prototypes to a large num-

ber of types of nonlinearities. This is done by seeking a means of
utilizing the proposed prototypes as templates or basic building
blocks in the initialization; accordingly, a target function with
complex nonlinearities can be visualized as a linear sum of simple
nonlinearities whose prototypes have already been constructed.
Just like the construction of prototypes, this decomposition does
not need to be exact. Delicate features are left to the adaptivity of
the neural network during training.

Figure 4 illustrates the idea of decomposition. In Fig. 4(a), a
wave form is spatially partitioned into several individual cycles,
each of which can be approximated independently using Prototype
3 after some detailed treatment under Stage III transformation.
The training results are presented in Refs. [25,26]. In Fig. 4(b), the
summation of a straight line and a clearance (dead space) type
nonlinearity over the same input range is exercised to produce a
multislope nonlinearity. The training result is presented in Fig. 5.
Using subtraction instead of summation, the saturation nonlinear-
ity can be decomposed into the same two types of nonlinearities.

A good understanding of sigmoidal functions is necessary in the
proposed decomposition. One unique advantage of Prototype 3 is
that it offers a convenient local basis function since its neighbor-
ing areas are all zero. In contrast, Prototypes 1 and 2 have nonlo-
cal basis functions since their neighboring areas are nonzero and
can be highly nonlinear, as shown in Figs. 3(a) and 3(b). These
features should be taken into account when decomposing complex
target functions.

1 1
05 05
+ o=
/&> ,;/E\
0.5 I8 0.5 (K25
s v
4 = 4 E
0 5 10 0 5 10
20 20 20
10 10 10
0 0 4+ 0 —
EN
-10 -10 -10 3
20 -20 20 ——
(b) 10 0 -10 0 10 10 0 10

Fig. 4 Decomposing (a) swept sine and (b) multislope into a summation of some com-
ponents that can be approximated directly using the proposed prototypes
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Fig. 5 An example of combining Prototypes 1 and 2 to train a multislope function. The
idea of decomposition is presented in Fig. 4(b). The target function is in gray, while those
black curves with different line thicknesses show four random options using the
Nguyen-Widrow initialization [6]. Note that both Steps 1 and 2 were used to generate

possible options for the initialization.

2.5 Transformation: Dealing With Non-Normalized Input
and Output. The concept of prototypes and their variants is ge-
neric and thus should not be restricted to normalized input and
output ranges. In principle, one could determine the values of IW,
b, and LW based on arbitrary input and output ranges. This flex-
ibility, however, could cause confusion and inconsistency, and
needs to be handled with care for the sake of clarity in implement-
ing the proposed methodology.

Having said this, it is adopted in this study to (i) define proto-
types and their variants entirely based on normalized input (x) and
output (y(x)) ranges and (ii) utilize a separate stage, Stage III, to
further transform a selected prototype or its variant for a non-
normalized input-output situation. Three scenarios involving non-
normalized ranges can arise, and the corresponding strategies uti-
lizing the derived prototypes and their variants for normalized
ranges are given as follows:

(i) Non-normalized input, x=C x: One can proportion the de-
rived prototypes and their variants by “stretching” or
“squeezing” the function approximated by the initial neu-
ral network along the x-direction in inverse relation to the
non-normalized input. Quantitatively, the transformed
value of IW, w, is based on wx+b=wx+b, where w
=(1/C)w.

Offset of the target function along the input, X=x+x, or
along the output, y=y+y,: To handle the offset, one can
translate the derived prototypes and their variants by shift-
ing the entire function to its new center while preserving
its shape. When the input alone is offset, the transformed
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value of the basis, l;, is based on wx+b=wf+};, where b
=b—-wx(. When the output is offset, one can utilize the two
terms that are designated to approximate a constant [18].
Non-normalized output, y=C,y: It is proposed that the LW
values of the prototypes and their variants be scaled ac-
cording to the non-normalized range of the output.

(iii)

Since the values of IW and b determine the basis function in
function approximation, the related transformations are referred to
as Step 1. Similarly, the values of LW affect the coefficients, and
their related transformations are referred to as Step 2. It is recom-
mended that Steps 1 and 2 be carried out in this sequence. Both
shorthand notations have been indicated in Fig. 1 and will be
further utilized in the following training examples for clarity. In
addition, the following notation will be used to denote a typical
neural network generated from the proposed initialization meth-
odology after the full procedure (including transformations) has
been applied to the prototypes and their variants as introduced
above:

[KeN
(

Initial neural network ID: Cy Xn ¥'>
0.

+Yo

where n denotes the prototype number and variant ID.

2.6 Comparison Between Proposed and Nguyen—Widrow
Initialization. In addition to the comparisons throughout the
training examples presented later, a couple of highlights are pro-
vided here to compare the proposed initialization with the
Nguyen-Widrow initialization algorithm [6] as well as with some
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Table 2

Initial values of the weights and biases used in Figs. 5, 6, 8, and 10. Note that in this

table, normalized inputs and outputs are used. The quantities with * are fixed. The quantities
with t are associated with the constant term [15,18] and are not scaled throughout this study.
Also note the interrelationships between various IW, b, and LW values.

Prototype and variant

Weights in input layer, IW  Biases in input layer, b ~ Weights in output layer, LW

Fig. 5 (multislope nonlinearity)

151014 24110] [0.1 05 05 1T -1
1501014 2 pL10] [0.1 0.5 0.5 1T 177
161004 2101 [0.1 1.0 1.0 17 =177
2 X 1p11014 240101 [0.1 0.5 05 17 —17]”

40 % 1611420 24100 [0.1 0.5 0.5 17 —17]"
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[111-15-15]
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211 -2 -2]

[40 20 20 —40 —40]

Fig. 6 (two-variable softening Duffing nonlinearity)
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Fig. 8 (piecewise nonlinearity typical of concrete in compression)
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Fig. 10 (scaled output cubic nonlinearities)
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previous work reviewed above in Sec. 1. Bear in mind that the
proposed initialization is not aimed at approximating arbitrary
functions. Rather it is a domain-specific application.

First of all, unlike the Nguyen—Widrow algorithm, the proposed
initialization is constructive, i.e., it answers how many hidden
nodes are needed. Similar to the Nguyen—Widrow algorithm, the
proposed initialization (i) emphasizes understanding the function
to be approximated (although the implementation is achieved in a
different manner), (ii) utilizes the strength of sigmoidal functions
(although the focus of these two approaches are different), and
(iii) could still be subjective and involve some trial and error.
Further details can be seen in Ref. [25].

3 Training Examples

All ten types of nonlinearities were successfully trained using
the proposed methodology. While typical examples of directly
adopting the proposed prototypes can be found in Refs. [25-27],
the way to utilize the proposed decomposition technique is the
focus of this section (see Table 2 for all values of the weights and
biases). All trainings were carried out using the MATLAB Neural
Network Toolbox [19] with the batch training mode and the
Levenberg—Marquardt backpropagation algorithm [28]. Since the
Nguyen—Widrow initialization algorithm does not specify the re-
quired number of hidden nodes, this critical piece of information
is borrowed from the proposed initialization methodology when-
ever the Nguyen—Widrow initialization is used.

3.1 Approximating One-Variable Functions by Combining
Prototypes. The decomposition approach presented in Sec. 2.4
can be applied to numerous types of nonlinearities that are more
complex than those nonlinear functions that can be approximated
directly by individual prototypes. As shown in Fig. 4(a), a swept
sine can be approximated by applying Prototype 3 three times,
yielding a neural network with six hidden nodes. In particular, the
center of each cycle needs to be captured in the initialization
through translation (i.e., adjusting the value of the bias, b), while
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the non-normalized input range needs to be taken into account
through proportioning (i.e., scaling the value of the weights, IW).
One feasible neural network initialization for a swept sine curve
can be written: —1 X 3a£ﬂ—1 X 3aE;'>25]—1 X 3aE;§. The results of a

similar training can be found in Refs. [25,26].

One more example is shown in Fig. 5 for the multislope non-
linearity (type IV in Fig. 2) following the decomposition idea
shown in Fig. 4(b). The option of 40 X 156[1914+20 % 24119 seems to
give the best performance when the epoch number is small, while
that of 2X 1619042411 tends to perform best in the long run.
Note that multiple options exist for the training. The presented
training results are not exhaustive; one can utilize the proposed
Stage III to further generate and refine other options. The satura-
tion and stiction nonlinearities (types IX and X in Fig. 2, respec-
tively) have also been trained successfully as a further validation
of the proposed decomposition approach. Additionally, the frac-
tional power nonlinearity (type V in Fig. 2) can also be trained
using a decomposition approach as presented in Ref. [26].

For the commonly seen functions in engineering mechanics
presented thus far, the proposed initialization seems to be effi-
cient. From these training examples, it can be seen that the pro-
posed initialization starts with a neural network output that always
mimics the target function to a certain extent and consequently
leads to a successful training. In contrast, the Nguyen—Widrow
initialization starts with a random realization that does not bear
any similarity to the target function, and the corresponding train-
ing can have unpredictable success. As for convergence speed (as
shown by the mean square error (MSE) versus epoch) in success-
ful training cases, the proposed initialization is at least equivalent
to that of Nguyen-Widrow’s, if not faster. More predictable train-
ing success and faster convergence speed are the advantages of
the proposed initialization, as well as (i) full knowledge of the
required number of hidden nodes and (ii) a clear procedure at
every stage of the initialization.
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Fig. 6 Training results of a softening Duffing nonlinearity [30] based on two options using the Nguyen-Widrow algorithm
and two other options using the proposed initialization methodology. All four trainings use neural network of five hidden

nodes. The target function is in gray.

3.2 Approximating Two-Variable Functions by Combining
Prototypes. Approximating a function of two (or more) variables
is of great importance in engineering mechanics applications. For
example, nonlinear hysteretic restoring force can be formulated as
both displacement and velocity in a single-degree-of-freedom
(SDOF) system, which is known as the force-state mapping for-
mulation [29]. References [15-18] outline some of the strategies
to map the force-state formulation into a feedforward neural net-
work with one hidden layer. When the memory effect of nonlinear
dynamics is considered, three state variables are needed in the
formulation. When the degradation is further considered, four
state variables are needed. All these point to the need of approxi-
mating functions with multiple variables.

To approximate a function of two variables, certain situations
can be conveniently handled according to the proposed initializa-
tion for one-variable functions, as presented in Refs. [15-18]. The
idea of decomposition is very useful in generalizing the solution
from one-variable to two-variable functions, especially when deal-
ing with two uncoupled variables. For example, a softening
Duffing oscillator from Ref. [30] is described as g(x,x)=x
+0.0159x-0.01x3, where x and % stand for displacement and ve-
locity, respectively (i.e., the state variables). For x, Prototype 3 is
utilized to capture the softening cubic nonlinearity (type VI in Fig.
2), while for %, Prototype 1 is adopted to approximate either a
linear viscous or a Coulomb damping term. Figure 6 presents the
training results using both the Nguyen—Widrow and the proposed
initialization, each with two options. It can be seen that the pro-
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posed initialization is more successful than the Nguyen—Widrow
algorithm in approximating this function even when using only
five nodes.

4 Versatility and Robustness of Proposed Prototypes

4.1 Understanding Versatility of Prototypes. This work
would be trivial if the proposed forward-formulation-based proto-
types and their variants could only successfully be trained to ap-
proximate the specific nonlinearities that they were derived for. In
other words, a critical question is: ““Can these prototypes and their
variants be successfully trained to approximate nonlinearities of
the same types but with different coefficients, or even nonlineari-
ties beyond those types?” The answer to this critical question is
positive. Indeed, the adaptivity of the proposed prototypes and
their variants has proven to be superior.

For a normalized input and output, Prototype 1, variant ¢, can
be used to train a range of fractional power nonlinearities (type V
in Fig. 2), including x=y, x= y3, etc., in addition to the hard lim-
iting nonlinearity (type VIII) which it resembles most. Figure 7
further reveals the considerable adaptivity of Prototype 2, variant
a, which can be trained to approximate (i) a wide range of poly-
nomials, (ii) various combinations of piecewise polynomials, and
(iii) clearance (dead space) nonlinearities. This variant with only
four hidden nodes has demonstrated great flexibility to these
popular nonlinearities, from which the merit of using sigmoidal
functions as a unified basis in engineering mechanics applications

Trained Neural Networks

Polynomials Piecewise [ 15 Clearance 2
Nonlinearities i Dead Space, 7
05 05 A 10| (bead space) ;
S 5
0 0 2zt 0 =
o v 5¢ ¢ |— Dead Space 1
4 —_—1—" ~ F o Ty =05y = (y - - Dead Space 2
03 _5:: :H:: 05 ;s yy :Oxz‘s;z sz -10 2 --- Dead Space 3
; — 7 — 15" 1 %4 - y=xhy=x" I 3 22 Dead Space 4
-1 05 0 05 1 -1 05 0 05 1 -1 05 0 05 1
i Training Performance 1 Training Performance 3 Training Performance
10 - 2 10
10"}

L
0
£10

107

1072

0 20 40 60 80 100
Epoch

7
0 20 40 60 80 100
Epoch

0 20 40 60 80 100
Epoch

Fig. 7 Prototype 2, variant a (with four hidden nodes), is used to approximate
various nonlinear functions. Note that some inputs and outputs are normalized.
Also note that some of the trainings stopped prematurely.
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Fig. 8 An example of using Prototype 2, variant a (with four hidden nodes), to approxi-
mate an idealized piecewise unsymmetrical nonlinearity with an offset that is typical of
concrete in compression. The target function is in gray, while those black curves with
different line thicknesses show four random options using the Nguyen-Widrow initial-
ization [6]. Note that both Steps 2 and 1 were gone through individually to generate three

possible options for the initialization.

can be verified. The proposed initialization methodology demon-
strates a constructive means to achieve this flexibility.

4.2 Approximating Piecewise Unsymmetrical Functions.
Although the proposed prototypes are derived to approximate
symmetrical and smooth nonlinearities, as demonstrated previ-
ously in Fig. 3, these prototypes have shown the ability to be
trained and converged well to piecewise unsymmetrical nonlin-
earities over the specified input range, as revealed in the middle
column of Fig. 7. Approximating these nonlinearities is of great
practical significance. First, they represent experimental phenom-
ena that can often be encountered in the practice of engineering
mechanics such as concrete in compression, and clearance (dead
space) joint behavior. Second, these situations involve the C! dis-
continuity where (i) polynomial fitting normally cannot perform
as efficiently and (ii) the Fourier series causes nonuniform con-
vergence (the so-called Gibbs phenomenon).

An idealized function typical of concrete in compression, a pa-
rabola joined by a horizontal line at its vertex, is approximated.
Figure 8 shows the training results using both the Nguyen—
Widrow algorithm and the proposed initialization methodology. It
can be seen that the joint of the curves is offset both horizontally
and vertically. Similar to Fig. 5, multiple options for the initial-
ization exist, following the proposed methodology; those pre-
sented are merely some possibilities.

4.3 Handling Noise in Data. Multilayer feedforward neural
networks are known to be robust to measurement noise in experi-
mentally collected data [21]. A selection from each nonlinearity in
Fig. 2 was contaminated with Gaussian noise to three different
degrees and then trained with the proposed initialization method-
ology and compared with the Nguyen—Widrow initialization [6].
A typical example has been presented in Ref. [27]. When using
the proposed initialization, a good selection of variants seems to
make the training successful even with a high level of noise. Here
a good selection appears to be guided by the similarity between
the target function and initial neural network output, which will be
further discussed in Sec. 5.2. When the Nguyen—Widrow algo-
rithm is adopted, there are options leading to a successful training
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even when the noise level is high. However, the procedure of
selecting the right Nguyen-Widrow option is uncertain due to the
highly random nature of this scheme.

5 Subjective Issues

As outlined previously in Sec. 2, the proposed initialization
methodology does contain subjective judgment, which originates
from (i) matching a target function with a collection of prepre-
pared prototypes and their variants as in Stages I and II and (ii)
deciding the free values for some of the weights and biases as in
Stage III. Since a matching process can be fundamentally consid-
ered a pattern classification problem, challenges arise when a pat-
tern falls onto the boundary between two patterns or when a
boundary itself is ambiguous. Varying the values of weights and
biases within a prototype/variant will alter the degree of similarity
between the target and the initial neural network output and will
thus affect the decision associated with the initialization. The fo-
cus of the discussion hereafter is given to making the best deci-
sion for a successful training in terms of convergence and ap-
proximation accuracy.

5.1 Multiple Options in Selecting Prototypes and Variants.
There are multiple options for initializing neural networks to ap-
proximate a given nonlinear function according to the proposed
methodology. The prototypes introduced in Fig. 2 may not be
exhaustive, nor are their combinations thought to be exhaustive.
Furthermore, the correlations between the target functions and the
prototypes or prototype combinations are not exhaustive. While
one prototype/variant can be used to approximate multiple nonlin-
earities, as shown in Fig. 7, one type of nonlinearity may be
successfully approximated by more than one prototype. The two
options for prototypes shown in Fig. 2 for the approximation of a
fractional power nonlinearity have been presented in Ref. [26].
There appears to be a many-to-many relationship between types
of nonlinearities and prototypes, which should be confirmed in
future studies.

5.2 Deciding Free Values in Weights and Biases. In this
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Fig. 9 An example of training performance as affected by the selection of the IW values.
Here the target function (shown in gray) is a clearance (dead space) nonlinear function,
while the three variants of Prototype 2 (with four hidden nodes) with and without pro-
portioning during Step 1 of Stage lll are selected for training. Note that some of the

trainings stopped prematurely.

continuing development of previous efforts [15,17], one of the
critical issues considered is how to decide the free values in the
weights and biases. On one hand, all the options in each training
example serve as case studies for the specified types of nonlin-
earities. On the other hand, the versatility explored in this study
indicates that one does not need to make the output of the initial
neural network match the target function exactly. Rather, one only
needs to capture the dominating features. This might seem to relax
the necessity of properly deciding the critical free values of the
weights and biases. However, there are still nontrivial questions
such as the following: (i) How should the major features of target
functions that are required for this initialization methodology be
defined? That is, what are the really “major” and “minor” fea-
tures? To what extent should the neural network initialization cap-
ture them to lead to successful training? (ii) To what extent should
one adjust the input layer weights IW, biases b, and layer weights
LW during the initialization, and to what extent should these be
left to training? Even though iterations are recommended, as
shown in Fig. 1, and although there are also some general treat-
ments on non-normalized inputs and outputs before and after
training, as discussed elsewhere [15-17], there persists a practical
need to decide whether and how to adjust these values especially
for the purpose of real-time training.

The authors do not expect this paper to completely tackle all
these challenging issues. However two typical examples, one for
Step 1 and the other for Step 2 under Stage IlI, are presented to
suggest solution strategies. Note that some of them are not en-
tirely consistent with other studies on training neural networks.

To train a clearance (dead space) nonlinearity (type VII in Fig.
2), Fig. 7 has suggested the possibility of using Prototype 2, vari-
ant a. Figure 9 presents a parametric study involving proportion-
ing and translation at Step 1, where different values for IW (be-
tween the two rows in the figure) and b (within each row) are
used. The three variants of Prototype 2 (with four hidden nodes)
with and without proportioning during Step 1 are selected for
training. It seems that commonly recommended small values of
IW [12,13] do not always lead to good training performance.
Rather, a high value of IW, along with an initial neural network
output that more closely resembles the target function, leads to

061002-10 / Vol. 75, NOVEMBER 2008

better training performance in this case.

The other example presented in Fig. 10 focuses on the effect of
scaling at Step 2 when the values of LW are adjusted according to
the range of a non-normalized output. It demonstrates that select-
ing proper values for LW can affect training performance and thus
requires careful consideration. This is not entirely consistent with
the findings of previous studies [31]. Again, it appears that trying
to find the closest “resemblance” could be a better strategy than
selecting small values for LW when direct training of a non-
normalized input and output data set is required.

6 Discussion

Admittedly, approximating functions by following this pro-
posed initialization methodology involves more preliminary work
than would be necessary if the Nguyen—Widrow initialization al-
gorithm were used. However, it should be noted that this study’s
primary aim is to clarify the use of neural networks, not to de-
crease the emphasis on the initialization. As has been shown in
this study, an additional consideration made when selecting a
proper neural network initialization more often results in a more
accurate approximation. Furthermore, it is envisioned that the de-
sirability of a prototype-based methodology like this one will in-
crease further once the prototype and variant selection process can
be automated, an avenue which has been identified for future
work.

Although analytical rather than experimental training data have
been used exclusively throughout, this study is still relevant for
general engineering mechanics applications. First, the work pre-
sents a set of specific tactics on how to approximate ten or even
more typical nonlinearities using multilayer feedforward neural
networks. Second, the results on the versatility of the proposed
prototypes show great promise for the success of applying this
initialization methodology to many other practical cases that are
not included in this paper. Finally, the authors have trained data
containing noise simulating real-world situations.

Mathematically, it is very important to note that throughout this
study, the proposed initialization does not involve considering the
orthogonality of the basis functions. Having orthogonal basis
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Fig. 10 An example of training performance as affected by the selection of the LW values.
Note that the input is normalized while the output is not. The target functions are in gray, while
those in black with different line types show various options created by scaling up the LW
values of Prototype 2, variant a (with four hidden nodes). Note that some of the trainings
stopped prematurely. Also note that normalized mean square error (NMSE) is used in the last

panel for convenience of comparison.

functions is always preferred in functional expansion (e.g., Fou-
rier expansion) and is also popular for data-driven techniques
(e.g., wavelet decomposition). However, the goal and driving in-
terest of this study is not to look for a set of orthogonal sigmoidal
functions to start neural network training. Given the feasibility
proven by the universal approximator theorem [3,4], this body of
work focuses on the constructibility which can be achieved by
injecting the domain knowledge and exercising clear engineering
judgement rather than treating the initialization largely as a trial-
and-error procedure.

Some topics are identified for future work in Fig. 1. For the
commonly seen nonlinear functions in engineering mechanics
studied here, the proposed initialization scheme seems to be ef-
fective (in terms of convergence of training) and efficient (in
terms of utilizing a small number of hidden nodes). In regard to
approximation accuracy, the training performance time histories
of MSE versus epoch give a generally acceptable order of magni-
tude. For those examples where training stopped prematurely, one
of the causes could be an insufficient number of hidden nodes.
This indicates a need to study how to add extra sigmoidal terms
(i.e., hidden nodes) to improve approximation accuracy. Another
relevant topic to be addressed is the generalization of this study to
a high dimensional input space so that the memory and degrada-
tion of nonlinear dynamic systems can be modeled. The guiding
principle of exploiting mathematical reasoning and physical
meaning should be continually practiced to reveal the inner work-
ings of neural networks.

Journal of Applied Mechanics

7 Conclusion

The core idea behind this study is the injection of mathematical
reasoning and physical meaning into the neural network initializa-
tion for a successful training. Neural networks can be highly ver-
satile and efficient in adapting to data when approximating non-
linear functions. However, these qualities can be achieved only if
neural networks are initialized properly, as constructively verified
in this study. A structured and detailed initialization methodology
has been presented as a continuous development of the heuristic
prototype-based initialization approach for multilayer feedforward
neural networks proposed in previous studies [15-18]. A range of
typical nonlinear functions used in engineering mechanics appli-
cations has been targeted, and training performance has been pre-
sented and compared with the Nguyen—Widrow initialization al-
gorithm. Technical challenges have been identified, and solution
strategies have been provided. The proposed initialization meth-
odology has shown satisfactory versatility and robustness in addi-
tion to being a constructive method.
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point flow of second grade fluid over a heated flat plate moving with some constant speed.
The analytic solution is obtained by a newly developed analytic technique, namely, ho-
motopy analysis method. By giving a comparison with the existing results, it is shown that

the obtained analytic solutions are highly accurate and are in good agreement with the
results already present in literature. Also, the present analytic solution is uniformly valid
for all values of the dimensionless second grade parameter «. The effects of a and the
Prandtl number Pr on velocity and temperature profiles are discussed through graphs.
[DOL: 10.1115/1.2957597]
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1 Introduction

Exact solutions of the Navier—Stokes equations with nonvanish-
ing nonlinear terms can only be obtained in a small number of
cases. Each such solution is of considerable methodological inter-
est, even though not always of great physical importance. One
tractable similarity solution is that corresponding to viscous in-
compressible flow in the neighborhood of a two-dimensional stag-
nation point. In the beginning of the 20th century, the orthogonal
stagnation point flow was first studied by Blasius [1]. Heimenz [2]
presented the numerical solution to Blasius’s problem. Orthogonal
stagnation flow on oscillating and translating plates has been stud-
ied by Glauert [3]. Two-dimensional oblique stagnation flow was
solved by Stuart [4] and later by Davey [5] and Tamada [6]. The
heat transfer due to a jet impinging orthogonally onto a horizontal
moving surface has been solved by Dorepaal [7].

In recent years considerable amount of interest has been given
to the stagnation point flows of viscous fluids (see, for instance,
Refs. [8—15]). This is because of their great importance in both
theoretical and practical points of views. From the theoretical
point of view, such kind of flow is fundamental in fluid mechanics
and forced convective heat transfer. From the practical point of
view, these flows have applications in forced convection cooling
processes where a coolant is impinged on a continuously moving
plate. Due to their important applications in industry, the non-
Newtonian fluids have received a lot of attention during the past
few decades. Unlike Newtonian fluids, the non-Newtonian fluids
could not be represented by a single flow model. There are many
empirical and semiempirical flow models for these fluids.
Amongst all these models, the second grade model has become
very much popular. The constitutive assumption for the fluids of
second grade or second order is in the following form:
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T=—pI+MA1 + CYIA2+ a2A|2

where T is the Cauchy stress tensor, —pl is the spherical stress due
to the constraint of incompressibility, u is the coefficient of vis-
cosity, a; and a, are the material moduli, and A; and A, are the
first two Fosdick—Rajagopal tensors [16]. The Clausius—Duhem
inequality and the assumption that the Helmholtz free energy is a
minimum in equilibrium provides the following restrictions [17]:

nw=0, =0, a+a,=0

The third condition is the consequence of the Clausius—Duhem
inequality, and the second follows the requirement that the Helm-
holtz free energy is a minimum in equilibrium. A comprehensive
discussion on the restrictions for u, ay, and a, can be found in the
work by Dunn and Rajagopal [18].

In this paper we consider the steady three-dimensional viscous
stagnation point flow of a second grade fluid over a moving flat
plate. The same problem has already been studied by Baris [15].
Baris applied the perturbation technique in order to reduce the
order of the governing nonlinear equations. The obtained zero-
order and first-order systems of nonlinear equations were then
solved numerically. The results obtained by Baris [15] are valid
only for 0= a=<0.2. In order to investigate the flow phenomenon
for «=0.2, we have solved the same problem analytically by the
homotopy analysis method (HAM). The results obtained by HAM
are purely analytic and uniformly valid for all values of a. The
numerical results of Baris [15] can easily be determined from our
present analytic solution by the suitable choice of the auxiliary
parameter %, which proves the accuracy of the present analytic
results.

Although the nonlinear analytic techniques are fast developing,
still they do not completely satisfy the mathematicians and engi-
neers. It is however still very difficult to solve nonlinear problems
by means of analytic techniques. The nonlinear analytic methods
most widely applied by engineers are perturbation techniques
[19]. Using the perturbation method, engineers have obtained
many interesting and important results. However, like other non-
linear analytic techniques, perturbation methods have their own
limitations. The application of perturbation techniques requires
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the presence of a small or large parameter in the equation, thus not
applicable to the problems involving no small or large parameter.
Even if such parameter is present, the obtained perturbation re-
sults are valid only for small or large values of that parameter.
Currently, Liao [20] introduced an analytic technique for highly
nonlinear differential equations arising in science and engineering.
Unlike perturbation techniques, the homotopy analysis method is
applicable to those nonlinear problems which do not involve any
small or large parameter. Besides, it logically contains the other
perturbative techniques, such as the Adomian’s decomposition
method [21], the S-expansion method [22], and Lyapunov’s small
parameter method [23]. The method has been successfully applied
to a large number of nonlinear problems by many researchers (see,
for instance, Refs. [24-39]), which proves the validity of the
method.

The paper is organized in four sections. Section 2 consists of
flow analysis in which we present an analytic solution of the prob-
lem, its convergence, and the graphical representation of solution.
Section 3 consists of heat transfer analysis. In Sec. 4 some con-
cluding remarks are given, and at the end some constants appear-
ing in the solution expressions are defined in the Appendix.

2 Flow Analysis

We consider an infinite plate adjacent to the xy-plane, and
z-axis is taken perpendicular to it. The plate is moving with a
constant velocity U in the x-direction. A non-Newtonian fluid of
grade 2 flowing in the negative z-axis approaches the moving
plate at z=0 and divides into streams proceeding away from the
stagnation point at the origin. Far from the plate, the velocity
components in x-, y-, and z-directions in the frictionless potential

flow are given by
U, = ax, wo, == 2az (1

and the pressure distribution is given by the Euler equation

Uy =ay,

p
pP—Po=— E(uw2 +u. 24w, (2)

where a is a physical constant, p is the density of the liquid, and
Po 1s a constant corresponding to the pressure at the stagnation
point. In order to get a solution which satisfies the no-slip bound-
ary conditions and agrees with the outer solution far from the
stagnation point, we shall seek a velocity field of the form

w=Uf(n) +axh'(n), v=ayh'(n), w=-2avh(y) (3)

where v=pu/p is the kinematic viscosity, 7=va/vz, and the
primes denote the differentiation with respect to #. The equations
governing such kind of flow of a second grade fluid in dimension-
less form are given by [15]

"+ 200" =02+ 1 + a(2h' B = 2hR™® - K"?) =0 (4)

STH2hf =R f+ a(=2hf" + R = R"f + ") =0 5)
subject to the boundary conditions

h=0, h'=0, f=1 atn=0

h—1, f—0 asnp—oo (6)

where a=aa,/u is the dimensionless second grade parameter.
2.1 Analytic Solution. We use the homotopy analysis method
to solve systems (4)—(6) analytically. Due to the boundary condi-

tions (Eq. (6)), the solution expressions for () and f(7) can be
expressed in the following form:

400 400

h(m) =A0,0+2 EAi;j”/e_m (7)

i=1 j=0
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400 40

f) =2 X Byme™ ®)

i=1 j=0

respectively, where A;.; and B;,; are coefficients. They provide us
with the rule of solution expression, which plays an important role
in the framework of the homotopy analysis method. According to
the boundary conditions (Eq. (6)) and the foregoing rules of solu-
tion expressions defined by Egs. (7) and (8), we choose the initial
approximations

ho(m)==1+n+e’” )
folp)=e™" (10)
and the auxiliary linear operators are given by
PH  oH
L[H(p;p)l=—7F-— 11
LIF(%:; )]——F F (12)
‘f 77517 - (97]2
From Egs. (4) and (5) we define the nonlinear operators
N LH )] 7H o TH (aH>2 X [zaﬂaﬁﬂ
pP)l=——7=+2H—-|— | +1+ —
WIREPI= 5 3 * 552 "\ oy N “on on
FH [ PH\?
-2H— -|— (13)
an an
PF oF oH
NAF(n;p),H(np;p)|l=—+2H— — —F
{F(7:p),H(7:p)] Py on o
PF  OH PF
— —_— 4 —
g anony
+a (14)
PHIF FH
ot dn o

Let £ denote the nonzero auxiliary parameter. We construct the
so-called zero-order deformation equations

(1 = p)Ly[H(7;p) = ho(m)]= phN,[H(7;p)] (15)
(1 =p)LLF(n;p) = fo(m)]=phNLF(5;p),H(m;p)]  (16)
subject to the boundary conditions
HOwp) = D] o pop) =1
(97] 7=0
HIP | ) paep)=0 (17)
/B

where p €[0,1] is the embedding parameter. When p=0 and p
=1, we have

H(7:0) =ho(n), F(7:0)=fo(n) (18)

and

H(np;:1)=h(n), F(n;1)=f(n) (19)

respectively. Thus, as p increases from 0 to 1, H(#) and F(#) vary
from the initial approximations h(7) and f,(7) to the final solu-
tions h(7) and f(#) of the original equations (Egs. (4)—(6)). As-
sume that the auxiliary parameter 7 is so properly chosen that the
Taylor series of H(#;p) and F(7;p) expanded with respect to the
embedding parameters, i.e.,

+00

H(m:p) = H(7;0) + >, h,(m)p"

m=1

(20)
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40

F(p:p) = F(7:0) + X, f,(m)p" 1)
m=1
where
J" ;
) =~ LD (22)
m! op p=0
1 J"F(n;
ful =~ LTR) (23)
m! dp p=0
converge at p=1. Then, from Egs. (18) and (19),
h(m) = ho(m) + 2 () (24)
m=1
Fn=folm) + 2 ful ) (25)

m=1

Equations (24) and (25) provide us with a relationship between
the initial guess solutions /(%) and f(7) and the unknown solu-
tions /(%) and f(7), respectively. In order to get the governing
equations for h,,(7) and f,,(7), (m=1), we first differentiate m
times the two sides of equations (Egs. (15)—(17)) about the em-
bedding parameter p. Then set p=0, and finally divide them by
m!. In this way we obtain the governing equations for 4,,(7) and

Sfulm), (m=1),

Lh[hm( 77) - thm—l ( 77)] = hRm( 77) (26)
LAfu(0) = Xuf (M1 =1HQ,,(1) (27)
subject to the boundary conditions
hy(0)=h,,'(0)=h,,'(+%) =0 (28)
Jn(0) = fou(+ ) =0 (29)
where
m—1
Rm(n) = hm—lm + (1 - Xm) + E [th—l—khk” - hm—l—k’hk,
k=0
+ahy, Wy = 20y = Ryl DT (30)

m—1

Qulm =f,"+ 2 2Ry + Moy i+ (= 2R "
k=0

1 = P i+ )] (31)
and
0 form=1 (32)
Xin= 1 form=2

We emphasize here that Egs. (26)—(29) are linear for all m=1.
Also, the left hand sides of Egs. (26) and (27) are governed by the
same linear operators L;, and Ly, respectively, for all m=1. These
linear operators can easily be solved especially by means of sym-
bolic computation softwares MATHEMATICA, MATLAB, etc. By solv-
ing Egs. (26)—(29) for the first few values of m, we find that the
solution expressions can in general be expressed in the following
forms:

2m+2 2m+2-n
(=2 2 ay, e (33)
n=0  ¢=0

Journal of Applied Mechanics

2m+2 2m+2-n

ful)= 2 2 b, e

n=0  ¢=0

(34)

where a,, " and b, 7 are constant coefficients of the series, which
can easily be determined through the following recurrence rela-

tions (m=1):

2m+2 2m+1
0_ 0_ q q_ q q
Ao = XmX2m+2%m-1,0 E Fm,() Mo, 1 E Fm,l M1
q=0 q=0

2m+2 2m+2-n 2m+2 2m+2-n

+ 2 2 (n_ 1)1_‘n1,nqll'(’n,()q_ E E 1—‘m,nq/’l’n,lq

n=2  ¢=0 n=2  ¢=1
(35)
2m+1
k _ k q q
Ao = XmXoms2X2m2-kGm-10 + 2 Uofpyts 1sk<2m+2
g=k—1
(36)
2m+2 2m+1
0_ 0 q q q q
A = XmXom+19p-1,1 T 2 T,.o'mo "+ 2 | o
q=0 q=0

2m+2 2m+2-n 2m+2 2m+2-n

- E E nrm,nqlu‘n,()q+ E E 1—‘nl,nqll‘('n,lq (37)

n=2  ¢=0 n=2  q=1
2m+1
k k
am,l = XmX2m+lX2m+l—kam—1,l + 2 1—‘m,lqll'(’l,kq’ I<k<2m+1
g=k-1
(38)
2m+2-n
k_ k q q
am,n - XmXZm+2—nX2m+2—n—kam—l,n + 2 I‘m,n lu’n,k
q=k
2<sn<2m+2, 0<k<2m+2-n (39)
2m+2 2m+2-n
0_ 0 q q
bm,l = XmX2m+lbm—1,l - E E Am,n Vno (40)
n=2  q=0
2m+1
k _ k q q
Dyi” = XXome1 Xam1 kDot 1 + > ATt 1sk<2m+1
q=k—1
(41)
2m+2-n
k_ k q q
bm,n - XmX2m+2—nX2m+2—n—kbm—l,n + E Am,n Vn,k
q=k
2=sn<2m+2, 0<k<2m+2-n (42)

where the different constants involved in the above recurrence
relations are given in the Appendix.

Hence with the help of Eqgs. (35)—(42), one can easily find all
the constant coefficients of the solution series (Egs. (33) and (34))
with the knowledge of the following:

0_ 1_ 0_
agog ==1, agg =1, ag; =1

2. 0_ 2 o0_ . 1_. 2_
Agg"=ay,) =dg) =dg, =doy =dg, =0 (43)

and
bO,lo =1, bo,l1 = bo,l2 = bo,zo = bo,zl = b0,22 =0

Therefore, the complete analytic solution can be written as

(44)
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Fig. 1 7i-curves of h(z) plotted for different values of the pa-
rameter o

h(m) = 2 hy(n) (45)
M=0

=2 fuln) (46)
M=0

2.2 Convergence of the Solution and Its Graphical
Representation. Liao [20] showed that as long as a solution series
given by the homotopy analysis method converges, it must be one
of the solutions. So, it is important to ensure the convergence of
the obtained solution series. As mentioned by Liao [20], the con-
vergence of the solution series depends on the initial guess ap-
proximations, the auxiliary linear operators, and the nonzero aux-
iliary parameter 7. Once the initial guesses and the auxiliary linear
operators are chosen, the convergence is then strongly dependent
on the auxiliary parameter 7. The admissible values of # are de-
termined by drawing the so-called %-curves. For the problem un-
der discussion, we have plotted the 7-curves (see Figs. 1 and 2) to
determine the admissible values of 7 in order to make the solution
series convergent. The intervals on #i-axis for which the #-curve is
parallel to the #-axis represents the set of allowed values of 7.

From Figs. 1 and 2 it is clear that by increasing the values of «
the interval of values of # shrinks down and shifts toward zero.
This is due to the fact that large values of « correspond to strong
nonlinearity, and when the nonlinearity becomes strong the choice
of values of # becomes more restricted. To prove the validity of
our HAM solution, we give a comparison between the present
results and the results obtained by Baris [15] (see, for instance,

14th—order app.

"\ — a=05
{
— a=10

) N - a=15
;) ---a=20
b A

) N

—

J

J

|

J
3 -0.2 -0.1 0

f

Fig. 2 fi-curves of f(5) plotted for different values of the pa-
rameter «
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lines for analytic results and symbolsfor numericaldata

0 0.5 1 1.5 2 2.5 3

Fig. 3 Comparison between the analytic solution and the nu-
merical data

Fig. 3).

Notice that the results plotted in Fig. 3 are obtained at a=0.1
and 7=-0.12. From Fig. 3 it is clearly seen that the present ana-
Iytic solution is in good agreement with the numerical results
presented in Ref. [15]. Further, the present analytic solution is
uniformly valid for all values of the second grade parameter «, as
shown in Figs. 4-7.

3 Heat Transfer Analysis

The heat equation in dimensionless form is given by [15]

0" +2Prhf' =0 (47)
subject to the boundary conditions
00)=1, O(+x)=0 (48)

where Pr=uC,/k is the Prandtl number, C, is the specific heat,
and k is the thermal conductivity of the fluid. Notice that the
above Eq. (47) is modeled under the assumptions that the specific
heat and thermal conductivity of the fluid are assumed to be con-
stant. The heat flux vector is represented by Fourier’s law, and the
effects of the radiant heating and viscous dissipation are negli-
gible.

In order to find an analytic solution of Eq. (47) subject to the
boundary conditions (Eq. (48)), we follow the same procedure as
performed in the previous section. To avoid the repetition we now

ax/U=0.01n=-0.04

1
— a=00
a=0.1
0.8 - a=02
2 --- 2=05
< 06 \ -- a=10
=) \ --a=30
>
Co04
+
< 0.2}
0,
0 1 2 3 4 5 6 7

n

Fig. 4 Effect of the parameter « on velocity distribution at
aU/x=0.01
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Fig. 5 Effect of the parameter a on velocity distribution at
aUlx=0.5

omit the details. Due to the boundary conditions (Eq. (48)), we
choose the initial guess approximation and the auxiliary linear
operator of the form

Oo(m) =" (49)

Fig. 6 Effect of the parameter a on nondimensional velocity
h' (1)

n=-0.04

Fig. 7 Effect of the parameter a on nondimensional velocity
h(z)

Journal of Applied Mechanics

LJYKWJﬁ]=éi§—7' (50)
a7
We now construct the zero-order deformation equation
(1=p)LAT(9:p) = 66(m)]=phNJT(n;p).H(m;p)]  (51)
subject to the boundary conditions
T(0;p)=1, T(+%;p)=0 (52)

where the nonlinear operator N [T(7;p),H(n;p)] is defined
through

NATOrp) Hop] = 2L + 2erj—f7 (53)

o
and correspondingly the mth-order (m=1) deformation equation
is given by

LB[ 0}11(77) - Xmgm—l(n)] = th(ﬂ) (54)
0,(0)=0, 6,(+x)=0 (55)

where
W, (m)=6,_"+2Pr> h,_,_.6, (56)

k=0

By solving Egs. (54) and (55) for the first few values of m, we
find that for a particular value of m the solution expression can
generally be written as

2m+2 2m+2-n
b =2 X el (57)
n=1 q=0

where cm’n‘] are the constant coefficients, which can easily be de-
termined by the following recurrence formulas (m=1):

2m+2 2m+2-n

0_ 0 q q
Cm, 1 = XmXom+1Cm-1,1 — E E Qm,n Vno (58)
n=2 g=0
2m+2
k _ k q q
Cont” = XmX2m+1 Xom+1-kCmoi, 1 T > Q, vyl Isk<2m+1
q=k-1
(59)
2m+2-n
k _ k q q
Cm,n - XmX2m+2—nX2m+2—n—kcm—I,n + E Qm,n Vn,k
q=k
2<sn<2m+2, 0<k<2m+2-n (60)

where the constants appearing in the above relations are defined in
the Appendix.

So, with the help of the above recurrence relations, one can
easily determine all the unknown coefficients of the solution se-
ries (Eq. (57)) with the knowledge of the following:

(61)

Thus, the complete analytic solution in the form of an infinite
series is then given by

L 0_ I_ . 2_ . 0_. 1_. 2_
Cop =1, cop =coi =cop =con =¢p =0

o(n) = >, Ou(7) (62)
M=0

3.1 Convergence of the Solution and Its Graphical Rep-
resentation. To ensure the convergence of our HAM solution for
temperature distribution, we have plotted the %-curve in order to
find the admissible values of 7 (see Fig. 8). It is also shown that
the numerical results of Ref. [15] can easily be determined from
our present analytic solution. For example, at a=0.2 and Pr=0.2,
the value of the heat transfer parameter 6'(0) calculated in Ref.
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Fig. 8 fi-curves of 6(y) plotted at the 12th order of
approximation

[15] is —0.384962, whereas our HAM solution yields —0.38434; at
a=0.2 and Pr=10 the value of ¢'(0) given in Ref. [15] is
1.618727 and the present analytic solution gives 1.61415. We
mention here that the analytic approximations can further be re-
fined by calculating the higher-order approximations. However,
even at 12th-order approximation our analytic solution is in close
agreement with numerical results, which proves the validity of our
HAM solution.

In order to see the effects of the Prandtl number Pr and the
second grade parameter « on temperature profile, we have plotted
the graphs for different values of these parameters. In Fig. 9 the
temperature profile 6(7) is plotted against the dimensionless inde-
pendent variable # for different values of the second grade param-
eter a. Clearly, an increase in « causes the temperature to in-
crease, but the effects of the Prandtl number Pr are quite opposite,
as shown in Fig. 10. At high values of the Prandtl number, the
temperature distribution is small. We mention here that the above
graphs are plotted at the 12th order of approximation. As we have
already mentioned in the previous section, the convergence of the
HAM solution is strongly dependent on the auxiliary parameter 7.
Our analysis shows that for large values of the parameters « and
Pr, the solution series converges only for values of % close to zero.
This fact has already been discussed in the previous section
through Figs. 1 and 2.

fn=-0.1Pr=10

aap)

Fig. 9 Effect of the parameter « on temperature distribution at
a fixed value of the Prandtl number Pr

061003-6 / Vol. 75, NOVEMBER 2008

n=-0.01a=10

oap

n

Fig. 10 Effect of the Prandtl number Pr on temperature distri-
bution at a fixed value of the parameter «

4 Concluding Remarks

We have obtained the complete and purely analytic solution to
the steady three-dimensional stagnation point flow of a second
grade fluid with heat transfer analysis. It is shown that the solution
is uniformly valid for all values of the dimensionless second grade
parameter « and the Prandtl number Pr. The present analytic re-
sults (at suitably chosen values of ) are in good agreement with
the results obtained by Baris [15] for small values of a. Hence the
present solution also contains the results of Baris [15]. It is ob-
served that for large values of « and the Prandtl number, the series
solutions converge for values of 7 close to zero. We emphasize
here that the homotopy analysis method is a useful analytic tech-
nique for such kind of nonlinear problems.

Appendix

rm,nq = ﬁ[X2m+2—nX2m+2—n—qu71,nq + (1 - Xm)(l - Xm+n+q)
+ zam,nq - lgm,nq + a(2 7m,nq - 2(Sm,nq - wm,nq)] (A 1)

q_— q q q
Am,n _h[X2m+2—nX2m+2—ll—qu—l,n + 2sm,n - Km,n

+ a(— 27'm,nq + )\m’nq - O'm’n" - 'n'm’nq)] (A2)

Q" = A Xomsr-nXomi2-n-gKm-1.2* + 2Prp,,_1 71 (A3)
in which

A= (g+ l)am’n"Jrl - na,,* (A4)

B, =(q+ 1A, """ -nA, " (A5)

C,.'=(qg+1)B, " -nB,, * (A6)

D, '=(q+1)C,, " -nC, * (A7)

E,,=(q+1)D, "' -nD,,, (A8)

G,.'=(g+1E, """ -nE, * (A9)

1,,0=(q+1G,,, """ =nG,, 1 (A10)

Toa®=(q+ D, " =nl,, (A1)

K, '=(q+1J,, " -nJ, 1 (A12)
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m—1 min{n,2k+2} min{g,2k+2—j}

=3 X > " o
Ay = By a1

k=0 j=max{0,n-2m+2k} i=max{0,g—2m+2k+n—j}

(A13)
m—1 min{n,2k+2} min{g,2k+2—j}
B’ = > Y A
m,n k,j“tm—=1-k,n—j
k=0 j=max{0,n-2m+2k} i=max{0,g—2m+2k+n—j}
(A14)

m—1 min{n,2k+2} min{q,2k+2—j}

Vm,nq = 2 E E Ck,jiAm—l—k,n—jq_]

k=0 j=max{0,n-2m+2k} i=max{0,g—2m+2k+n—j}

(A15)

m—1 min{n,2k+2} min{q,2k+2—j}

5m,nq = 2 E 2 Dk,jiam—l—k,n—jlrl

k=0 j=max{0,n-2m+2k} i=max{0,g—2m+2k+n—j}

(A16)

—1 min{n,2k+2} min{q,2k+2—j}

m
=3 3 S BB
wm,n - Bk,j Bm—l—k,n—j

k=0 j=max{0,n-2m+2k} i=max{0,g—2m+2k+n—j}

(A17)

m—1  min{n—1,2k+2} min{q,2k+2—j}

q_ i q-1
8m,n - 2 2 Ek,j am—l—k,n—j

k=0 j=max{1,n-2m+2k} i=max{0,g—2m+2k+n—j}

(A18)
m—1  min{n—1,2k+2} min{q,2k+2—j}
Ky = 2 E by, jIAm—l—k,nfj471
k=0 j=max{l,n-2m+2k} i=max{0,g—2m+2k+n—j}
(A19)

—1  min{n-1,2k+2} min{q,2k+2—j}

m
T = E E E Ik,jiam—l—k,n—jq_l

k=0 j=max{l,n-2m+2k} i=max{0,g—2m+2k+n—j}

(A20)

m—1  min{n—1,2k+2} min{q,2k+2—j}

)\m,nq = E E E Gk»_iiAm*l*kanifq_l

k=0 j=max{l,n-2m+2k} i=max{0,g—2m+2k+n—j}

(A21)

m—1  min{n—1,2k+2} min{q,2k+2—j}

q _ i g-1
a’m,n - E 2 Ek»_i Bmflfk,n—j

k=0 j=max{l,n-2m+2k} i=max{0,g—2m+2k+n—j}

(A22)

m—=1  min{n—1,2k+2} min{q,2k+2—j}

- i q-1
mn z 2 ak.]' Cm—l—k,n—j

k=0 j=max{1,n-2m+2k} i=max{0,g—2m+2k+n—j}

(A23)

m—1  min{n-1,2k+2} min{q,2k+2—j}

pm,nq = E 2 E J k,jiam—l—k,n—jq_l

k=0 j=max{1,n-2m+2k} i=max{0,g-2m+2k+n—j}

(A24)
and o, 9, py 1 it v Y and v, are defined through
g+1-k
(=1 p+l1
Hoi'= L k,) , g=0, 1<ksg+1 (A25)
p=0 :
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g+1-k
q!
= gy 470, 0=k=g+l (A26)
p=0 "°
q—k q—k-r

—q!
,U«n,quz E Z

purfirt k‘(n _ 1)q+1—k—r—pnr+1(n + 1)p+l’
q=0, 0<k<gqg, n=2 (A27)
oo 4o g=k=g+1 (A28)
ik = K142k q="0, SKk=qg+
q-k \
q:
Vn,qu 2

SR+ 1) -

n=2 0sksgq ¢g=0 (A29)

respectively.
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Sailing: Dynamic Formulation
and Validation

Rotor blade sailing, which is characterized by excessive deflection of rotor blades, can be
experienced by shipboard helicopters during rotor start-up and shut-down. In an attempt
to model the complete ship-helicopter-rotor system in a way that is geometrically repre-
sentative and computationally efficient, the system was represented as a discrete-property

rigid-body and flexible-element system capable of simulating many important dynamic
effects that contribute to the motion of rotor blades. This paper describes the model in
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detail and discusses validation cases. While both dynamic effects and aerodynamic effects
are believed to be important components of blade sailing, this paper focuses exclusively
on the dynamics. The validation cases discussed herein suggest that the modeling ap-
proach presented offers excellent potential for efficiently modeling blade sailing and
other blade motion phenomena. [DOIL: 10.1115/1.2957599]

Keywords: blade sailing, tunnel strike, shipboard helicopter, multibody dynamics, La-
grangian dynamics, dynamic interface analysis, rotor engage/disengage, motion coupling

1 Background

Ensuring the safety of shipboard helicopters, during all phases
of operation, is challenging and important. During start-up and
shut-down operations on ship decks, helicopter rotor elastic re-
sponse is of concern for flight and personnel safety reasons. While
the rotors are engaged or disengaged, they turn at low speeds and
therefore can be subjected to high wind-induced aerodynamic
forces without the benefit of the centrifugal stiffening present at
normal operating speeds. This excitation, combined with ship
deck motion during all but the most benign sea and wind condi-
tions, can cause excessive deflection of rotor blades, and as a
result, the blades can come into contact with the fuselage or tail-
boom of the helicopter. This phenomenon, called “tunnel strike”
or “tailboom strike,” compromises the safety of flight crews, re-
sults in airframe damage, and may bring the airworthiness of the
helicopter into question.

Over the past 20 years, the blade sailing phenomenon has been
extensively studied [1]. Although blade sailing occurrences were
documented much earlier, as with the H-46 Sea Knight, which
came into operation in the shipboard environment in 1964, pub-
licly available research on blade sailing began in the 1980’s [2,3].
Hurst and Newman addressed the aerodynamic aspects of the is-
sue by comparing airwakes measured in the wind tunnel with full
scale data [4], by proposing simple airwake gust models that were
intended to capture the important components of steady airwake
[5], and by examining the effect of a more complex experimental
airwake on blade sailing depending on the position of the helicop-
ter on the flight deck [6]. Newman modeled the blade dynamics
using the first four structural modes of semirigid rotors [4,5] and
articulated rotors [6]. These results have been compared to vali-
dation data from wind tunnel experiments and full scale trials.
Geyer, Smith, and Keller also made significant contributions to
the body of work on blade sailing by using finite elements to
model rotor dynamics [7] and by adding torsional flexibility,
which influences the aerodynamic loads through blade twist. They
have used Newman’s simplified gust models [8] and a steady flow
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airwake model derived from computational fluid dynamics [9] to
achieve aerodynamic loading. Parametric studies have been con-
ducted on some of the factors that may contribute to the blade
sailing phenomenon, including rotor collective setting [10]. The
behavior of flap and droop stops has been studied independently
using validation experiments on the subject [11,12]. Bottasso and
Bauchau focused on the dynamics of the blade sailing problem,
using a library of predefined and prevalidated finite elements to
create a multibody formulation that simulates the rotor behavior
with droop and flap stop impacts [13]. Kang and He used com-
mercial software to develop a multibody formulation of a helicop-
ter and ship, including realistic ship motion and contributions
from the helicopter suspension to the dynamics of the problem
[14].

Three effects have been identified as potential major contribu-
tors to the blade sailing phenomenon and are thus being consid-
ered in the current research program: helicopter dynamics, ship
motion, and aerodynamics. The dynamics, including helicopter
suspension and blade flexibility in all directions, characterize how
the blade responds to a variety of inputs. Ship motion is transmit-
ted through the landing gear of a helicopter and may significantly
affect blade dynamic response. Aerodynamic effects are believed
to contribute to the serious blade deflections that characterize
blade sailing. Specifically, ship airwake turbulence and ship roll-
ing motion induce unsteady loading, particularly at rotor-system
resonant frequencies and thus must be modeled. Despite the ex-
isting body of knowledge on blade sailing, the relative contribu-
tion of dynamics, aerodynamics, and ship motion is not system-
atically understood and there is much room for research in the
field of blade sailing phenomena. As part of an ongoing study in
which the unsteady aerodynamic effects will be considered, this
paper describes in detail the development and validation of the
dynamic model, which includes the effect of realistic ship motion.

2 Modeling

The dynamic modeling of helicopter rotor blades is an active
field. Kunz summarizes blade modeling methods developed dur-
ing the first 40 years of the helicopter [15]. Detailed models have
been developed for rotors with hinges and those without [16],
using analytical methods and finite elements [17]. Results from
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Fig. 1 The model coordinate systems

many of these have been used to validate the dynamic model
described herein.

The current research uses a dynamic helicopter and blade
model that is based on the philosophy that a flexible continuous
system can be modeled with reasonable accuracy using a series of
discrete rigid bodies and flexible elements, provided that the dis-
crete properties are representative of the real system and that an
adequate number of degrees of freedom is included [18,19]. The
approach supports incorporation of geometric nonlinearities and
modal coupling. Rigid-body models of systems are at an advan-
tage over continuous models in that a closed-form set of dynamics
equations can be easily derived. This characteristic leads to equa-
tions that are easily and quickly handled by numerical solvers.
Some assumptions are required in the definition of a rigid segment
model for a flexible system; the major one being that continuous
deformation characteristics can be assumed to act at point loca-
tions. Once the model has been defined, the solution is exact for
that model and no terms need be neglected to achieve solvability.
As far as the authors are aware, this modeling approach has not
previously been used in the blade sailing context.

The dynamic model was developed according to the modeling
priorities summarized in the following.

* Blade flap is the motion of greatest concern, since it is the
primary motion in blade sailing. Torsion, to the extent that it
affects aerodynamic loads and thus flap, is also of concern.
This includes flap-twist coupling. Lead/lag, while included
in the model, is of lesser concern.

e The small angle assumption for blade flap deformation is
invalid since blade sailing deflections can be severe. The
rigid-segment model allows the analyst complete freedom in
choosing the number of segments, thereby introducing the
possibility of large angles through individual joints.

* Blade sailing occurs at low rotor speeds and exhibits mainly
rigid body and first elastic mode oscillation of the rotor
blades. Effects acting in the range of 0.1-3 Hz are carefully
included; effects acting at greater than 10 Hz are of lesser
concern.

* Blade extension flexibility was not modeled, as the exten-
sion is minimal at low rotor speeds.

*  Model versatility, in the sense that all system properties can
be easily modified by the analyst, is of utmost importance.
Efforts were made to allow a wide range of options and
operating conditions.

e Time domain results are desired.

The developed mathematical model represents the ship-
helicopter-rotor system shown in Fig. 1. The helicopter, which has
been approximately modeled as a midsize maritime helicopter
(such as an Augusta-Westland EH101), operates from the flight
deck of a typical frigate. The helicopter body is modeled as a
single rigid body and the rotor blades are each divided into a
series of rigid segments that are connected by three-dimensional
rotational springs. These springs allow blade flexibility in the tor-
sion, flap, and lead/lag directions. Ship motion excites the heli-
copter body through a suspension system model, and the ship
airwake excites blade segments through an aerodynamic model.
Other external forces are easily included in the system dynamics
without affecting the modeling approach or changing the basics of
the derived equations of motion.

061004-2 / Vol. 75, NOVEMBER 2008

It is worthwhile to briefly describe the system of body-fixed
coordinate systems, and the related nomenclature, used to derive
the equations of motion. The approximate locations of these can
be seen in Fig. 1.

The global or inertial coordinate system, G, is a translating-
earth reference frame. It exists at the center of the flight deck
when all ship motions, except constant forward speed, are zero.
All dynamic equations are ultimately expressed in the global
frame of reference. The orientations of this and subsequent refer-
ence frames are defined by Bryan Euler angles.

The ship frame of reference, S, is defined relative to the global
coordinate system and originates at the center of the flight deck.
The position of the ship frame is given by the ship motion algo-
rithm and is in the form (surge, sway, and heave). The orientation
of the ship is given by (roll, pitch, and yaw), which are assumed
equal to the frame Bryan angles. This assumption is inherent in
linear ship motion theory, which is widely used [20], and is valid
if only one rotation angle is expected to be large at a time.

The helicopter coordinate system, H, is also defined relative to
the global system. The coordinate system has its origin at the
helicopter center of mass.

The rotor frame of reference, R, is a coordinate system that
defines the axis of the rotor and allows the blades to turn together.
It is defined relative to the helicopter frame of reference, and the
origin is located at the center of the rotor hub in line with the
plane of the blades. The first two Bryan angles are defined by the
helicopter geometry and set the axis of rotation for the rotor. The
final Bryan angle varies with time in accordance with a represen-
tative rotor engage or disengage profile.

The flexible interfaces between the rigid blade segments are
referred to as “joints.” The first joint is the interface between the
rotor hub and the first segment. This joint is referred to as the
“root.” If the helicopter rotor being modeled is of the articulated
type, then the root joint is modeled as a hinge. Semirigid rotors
have flexible root joints, but they do not have hinges.

The blade segment reference frames, B; ), are defined relative

to the rotor reference frame, R, if i=1, or relative to the previous
blade segment reference frame, B;_;,, where i represents the
blade segment number starting with 1 at the inboard segment.
Each segment is defined with properties m; ), the segment mass

which is assumed concentrated at a point in space, {r; (M)}, at the

mass center of the segment, and [J; ], the segment rotational
inertia matrix about its center of mass. Each blade segment is
connected to the last at point {rp (M)} in the coordinate system of

the preceding segment. This location should be coincident with
the local shear center of the blade cross section, which can change
with radial position. These joints have a rotational element stiff-
ness matrix, [k(;,)], and viscous rotational damping coefficient
matrix, [c(,-qn)]. The subscripts (i,n) indicate that the quantity is
specified for the i segment on the n™ blade and that each (i,n)™"
quantity can be defined independently from the others. Thus, the
blade need not be uniform, straight, or untwisted, the elastic axes
and joints need not lie along a straight axial line, and the joints
need not be equidistant. Since the properties can be individually
assigned to each segment, they can be tuned to approximate
closely any continuous and generally nonuniform rotor blade. As
with variable finite element gridding, shorter segments can be
used in areas of higher flexibility, while longer segments can be
used in stiffer areas. The total number, size, and shape of the blade
segments are completely definable.

The Bryan angles for each segment can be used to track blade
torsion, bending, and lead-lag in time. If the local orientation
angles of each blade segment are small, then a linear approxima-
tion of each local transformation matrix could be used while
maintaining the overall ability of the model to capture large dis-
placements. This approximation was not utilized in order to avoid

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the modeling restriction that the number of rigid segments be
sufficient to maintain each local angle in the linear range.
The rigid blade segment coordinate systems, Biigiq(i), define

the undeflected shape of the blade. They are based on the unde-
flected Bryan angles for the (i,n)" segment and allow any struc-
tural deviations from a straight blade to be assigned. These sys-
tems are used as a reference for the spring energy calculations at
each joint and for calculating hinge friction. For an undeflected
blade, the coordinate system By; ) is coincident with Byigig(; n)-

Model degrees of freedom are defined as the position and ori-
entation of the helicopter coordinate system, and the relative ori-
entations of the blade segments, with the exception torsion on the
first segment of each blade. This is because the “torsion” at the
first joint is defined by predefined time-varying collective and
cyclic angles. Also defined by time-varying functions are ship
motion and rotor rotation.

The axial extension is known to be a dynamic variable of im-
portant consideration for flexible bodies rotating at high veloci-
ties. In addition to small axial displacements which can affect the
final blade tip location, the axial extension is known to change
slightly the torsional rigidity of blades with structural twist. This
coupling between axial extension and torsion can lead to changes
in the aerodynamic angle of attack at high rotor speeds. Discrete
axial flexibility and the related coupling effects could be included
in a similar manner as the torsional and bending flexibilities, as
shown in Ref. [21], without rendering the equations of motion
unsolvable. Since the blade sailing phenomenon is believed to
occur at low rotational speeds (less than 50% full speed), the axial
extension effects are believed to be minor and have therefore not
been included in the current version of the dynamic model.

2.1 Equations of Motion. The equations of motion for the
ship-helicopter-rotor system were derived using Lagrange’s equa-
tion, and distilled symbolically into the matrix form of Newton’s
second law [22]. The equations were then converted to first order
and time-history solution was propagated using a conventional
numerical integrator. A summary of the modeling of each system
component in Lagrange’s equation follows.

2.1.1 Kinetic and Gravitational Energy. The translational ki-
netic energy, rotational kinetic energy, and gravitational potential
energy all depend on the absolute body positions and velocities,
which have not been linearized. The expressions contain charac-
teristic cascading sums and products that vary in size with blade
and segment number. The derivation of the terms in Lagrange’s
equation has proven challenging owing to the variability of the
equations; however, a procedure has now been defined for a simi-
lar planar problem [22]. Expanding these methods into the three-
dimensional case is straightforward, yet interesting, and shall be
discussed in the Appendix.

2.1.2 Blade Joint Spring Potential Energy. The flexibility in
helicopter rotor blades is simulated at the joints that connect the
rigid blade elements. Since the Euler angles that define the motion
at each joint do not explicitly give the displacements of the indi-
vidual joint springs, the projected rotation angles must be calcu-
lated to find the individual linear spring forces about each axis.
Structural coupling can be preserved by employing a fully popu-
lated stiffness matrix, such that the potential energy of each joint
is given by

U(i,n) = %{e(i,n)}T[k(i,n)]{ e(i,n)} (1)
where
ex(i,n)
{66} =1 Oim 2
Bz(i,n)

and the components of {6; )} are projected angles.
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Fig. 2 General stiffness curve for blade root springs

2.1.3 Blade Root Potential Energy. Depending on whether the
helicopter being modeled has semirigid or articulated rotor blades,
the root modeling requirements change. If the blades are semi-
rigid, they can be approximated by a cantilever beam-type model,
and the joint is modeled similar to the outboard segment joints.

Articulated blades are hinged at the root. In this case, the joint
itself has lesser or no stiffness to approximate a hinge and the
blade must then be supported at low rotational speeds by droop
stops. At operational speeds, the inertial moment lifts the rotor off
the stops, and thus they are often retracted. Flap stops prevent the
blade from excessive upward flapping during engage and disen-
gage, and they also retract and extend at a given rotational speed.
The lead/lag stops, often hydraulic or elastomeric dampers, simi-
larly restrict blade motion outside a given acceptable range of
motion; however, their modeling is simplified by the fact that they
do not extend or retract during operation. These blade motion
limits are modeled using additional rotational springs and dampers
at the blade root when the angle of blade displacement at the root
exceeds the acceptable deadband range.

The stiffness curve for these elements is shown in Fig. 2 where
the subscript m refers to quantities in the range of negative 6
values. The subscript p refers to quantities in the positive range of
6. The negative and positive properties can be defined separately.
The quantities k, kg, and kg refer to the joint stiffness, flap stop
stiffness, and droop stop stiffness, respectively. For the lead/lag
stops, kg, refers to the stiffness of the stop when the joint angle is
negative, and so on. While the root hinge joint can be assigned a
stiffness value as per the figure, it is usually set to zero since the
hinges do not exhibit spring characteristics between the stop
regions.

The discontinuity between the stopping element and the hinge
stiffness is smoothed with a cubic function as shown in Fig. 2
where the coefficients of the smoothing function are a, b, c, and d.
The values 6y, and 6, are the stop contact angles in the negative
and positive angular directions, respectively. The values 6,,,, 6,,,
M,,, and M, are selected so that the curve fit occurs over a small
angle and the shape of the curve does not include inflection points.

The extension and retraction of droop and flap stops presents
some interesting modeling challenges. For instance, they retract
and extend at a given rotational speed; however, they cannot ex-
tend or retract if the blade is in contact with the stop when the
critical speed is reached. In addition, the extension and retraction
must occur over some measurable time and the blade might come
into contact with the stop during the process. The extra applied
moment due to the stop is assumed to vary linearly between its
fully engaged value and zero during the extension and retraction
process. These operational cases are all modeled and handled us-
ing appropriate logic within the simulation.

For use in Lagrange’s equation, the potential energy expression
for the variable spring element shown in Fig. 2 is
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rM,,,0+ Ykt 0 = ky05,0+ C

U(l,n)=< %k62+Cg

(M,0+ 3kas6 ~ ka,65,0+ Cs

where the constants C;—Cs do not appear in the equations of
motion. The polynomial coefficients a,,, b, a,, b, etc., are the
negative and positive angle equivalents of the coefficients shown
in Fig. 2. The quantities w, wy,, and wg refer to the rotor speed
and the stop retraction speed for the droop and flap stops, respec-
tively. In the case of the lead/lag stops, the conditions on w do not
apply since they do not retract and extend.

2.2 Nonconservative Contributions. Many system compo-
nents contribute to the equations of motion as nonconservative
effects. These include the suspension forces, including the effect
of ship motion; the damping forces associated with the blade seg-
ment joints and the blade stopping elements; aerodynamic effects;
and any other applied forces. The details of each contribution are
briefly discussed.

2.2.1 Ship Motion and Suspension. When exposed to dynamic
sea conditions, a ship will respond with motion in six degrees of
freedom: three translational motions: surge, sway, and heave; and
three angular motions: roll, pitch, and yaw. Ship motion is often
obtained by multiplying the spectra of ship response, called re-
sponse amplitude operators (RAOs) [20], by the incoming wave
spectrum [23]. This yields a representation of the ship motion in
the frequency domain, which can be used to generate a time-
history of ship motion at the center of mass, or at some other point
such as the center of the flight deck, using a Fourier series. Once
the RAOs have been determined either computationally or experi-
mentally [24], the displacement of each ship degree of freedom
can be reconstructed, typically with 40 frequency components.
The amplitudes and frequencies are found using simulated models
of ship behavior, and the phase is generated randomly to enhance
simulation fidelity [25].

Once the ship motion has been determined, the suspension
forces on the helicopter body can be calculated. The number of
suspension points is selected by the analyst, with definable geom-
etry and characteristic properties. In the helicopter coordinate sys-
tem, the vertical suspension stiffness can be largely attributed to
the oleo, or other vertical suspension element, in addition to the
tire. The horizontal stiffnesses can be attributed to the behavior of
the tire. The current model assumes that the helicopter is secured
such that the tires cannot slide, roll, or lift off the deck.

The suspension stiffness and damping forces are assumed to be
quadratically related to suspension displacement and velocity, re-
spectively, in each orthogonal force direction in the helicopter
frame of reference. The location of application of the forces
should be clarified. The true point of application is the deflected
suspension contact point. However, since the suspension motions
are not defined as system degrees of freedom, the force applica-
tion points are approximated as the undeflected suspension contact
points.

2.2.2 Articulated Hinge Friction. The friction that exists in an
articulated blade root hinge, flap, or lead/lag is an important part
of the model. The frictional moment due to hinge friction is con-
sidered to depend on the friction force acting between the sliding
surfaces of the hinge and the radius of the hinge pin. A continuous
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10,0+ 5,6 + te 6 +d,0+C,

14,00+ 30,6 + 3c,0?+d,0+C,

if —e<6f=6,,and w < wy
if 6,, < 6= 6,,, and w < wy
if 0, < 0= 0,, or ®> wy Or W (3)
if 0, < 0= 6,, and o < wy

if 6,, < #=c0and w < wgyq

approximation for the theoretical discontinuous friction function
can be achieved using a modified friction function, which includes
the Schiller friction model [26]. In this model, two quantities, &
and 7, scale the smoothing components of the modified functions.
The quantity ¢ is a small positive velocity, which represents the
time constant of the smoothing exponential decay from the static
peak of the friction function to the sliding friction component. The
smaller the velocity, the more representative the continuous ap-
proximation. A value of 7=1/0.02e provides good smoothing
through zero velocity without largely affecting the magnitude of
the static friction peak.

Owing to the fact that the equations of motion are formulated
using Lagrange, the reaction forces in each hinge joint are
calculated separately using a method suggested by Kane and
Levinson [27]. This method assumes an additional translational
degree of freedom in the hinge joint, which is the direction of the
reaction force desired, and then sums the inertial and active forces
to zero. The unknown in this summation is the reaction force
vector. The forces normal to each hinge are extracted from this
reaction force vector and used in the Schiller friction model.

2.2.3 Blade Joint Damping. The blade segment damping con-
sists of a number of possible components, depending on the
blades being modeled. The following rotational viscous damping
terms can be independently defined:

e the structural damping associated with the outboard blade
joints;

e the root joint damping, having a damping value consistent
with a semirigid joint or a hinge; and

e additional damping associated with the flap/droop and lead/
lag stops, applied when the blade root angle is in the appli-
cable range and the stops are extended.

In order that the damping of the motion stops be applied only in
the angular range over which the stops act, the damping force is
multiplied by the filter, f, which has a value of 1 in the angular
range of the stop and zero otherwise. A smoothing function, with
the same transitional angles as for the stop stiffness profile, is used
to eliminate the discontinuity that occurs when the stops are
impacted.

The damping moment about one hinge due to the corresponding
motion stops is therefore calculated by applying the filter value
using

— fer 6 if 0<0 and © = wy,

Mdamping = (4)
— feg® if >0 and w = wy,

where c¢g and ¢y are the damping coefficients of the flap and
droop stops, respectively. As with droop and flap stop stiftnesses,
the extension and retraction of the flap and droop stops means that
the extra damping is only applied if the rotor angular velocity is
below the critical speed for flap and droop stop extension, wg, and
g, Tespectively.
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2.2.4  System Proportional Damping. The model also contains
a proportional damping feature, which allows the user to employ a
linearized proportional damping relationship

[Clinear] = a[Mlinear] + b[KIinear] (5)

where the constants a and b are user defined. In the proportional
damping model, the linear mass and stiffness matrices [Mjjcar]
and [Kjj,e.r] are calculated about a specified operating point such
that [Cjiear] TEMains constant throughout the simulation.

In the model, the analyst has the option to toggle proportional
damping on and off, or apply proportional damping to certain
degrees of freedom and not to others. This is done by zeroing the
unwanted columns and rows in the linearized proportional damp-
ing matrix. Proportional damping can be applied in addition to
other forms of damping available in the model; if multiple damp-
ing sources exist, they are superimposed.

2.3 Blade Motion Coupling. There are several sources of
blade motion coupling which should be included in any helicopter
blade model in order to correctly capture blade response to a
variety of conditions. The rigid-segment model captures all these
coupling sources either through a fully populated stiffness matrix
or because the equations of motion have not been linearized.

Dynamic Coupling. This arises from out-of-plane gyroscopic
motion captured by the dynamics in the equations of motion.

Inertial Coupling. This occurs if the blade mass center axis is
offset from the elastic axis. As the rotor turns, the centrifugal force
that is generated will result in blade deflections. Similarly, flap
and lead-lag can lead to coupled torsional motion about the elastic
axis.

Structural Coupling. This results from a blade shear center that
is offset from the elastic axis. It can occur on isotropic and com-
posite blades.

Composite-Structural Coupling. This occurs as a result of the
composite fibers in the lay-up of a composite rotor blade.

Twist Coupling. This can include effects from the other types of
coupling but emphasizes the idea that the coupling properties of
the blade will change with radius if a built-in twist angle is
present.

2.4 Property Determination. A challenge of the rigid-
segment model is property determination, especially the stiffness
properties of the blade segments. Three determination methods are
here proposed; the most appropriate one for a given situation de-
pends on the information available.

2.4.1 Property Tuning. This method involves tuning the blade
response by comparing the rigid-segment results with experimen-
tal (or some other known) results. Depending on the available
information, the researcher may have to make some assumptions
about the model, and combine these with the available data to
arrive at a complete set of properties. The tuning method often
requires iteration and more than one set of data such that the
properties can be tuned to one set and then validated against an-
other.

2.4.2 Deflection/Load Case Fit. If a certain deflection shape
resulting from a known load case exists, then the individual joint
stiffnesses can be calculated by matching the deflections at each
joint to the known profile given the same load case. The
Bernoulli-Euler beam equation gives a straightforward way to
estimate a deflected shape for a simple load case such as a tip
force or a uniformly distributed blade weight.

Linear cantilever beam theory also provides a convenient way
of estimating the stiffness of a continuous uniform blade if the
natural frequencies are known.

2.4.3 Direct Method. If detailed continuous stiffness distribu-
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tions for the blade are available, then the discrete joint stiffnesses
can be calculated directly. Much research is currently being con-
ducted regarding the calculation of coupled stiffness matrices for
helicopter rotor blades [28], especially in composite blade appli-
cations, where the coupled components are known to be signifi-
cant. One typical formulation gives the blade energy per unit
length, U,/L stored in a deflected beam as

P GHC: ©
where
0
@={u g

The quantity 6, is the twist about x, and u, and u3 are deflec-
tions of the beam reference line in y and z, respectively.

Here, {€} contains the curvatures in torsion, flap, and lead/lag,
respectively. These represent the rate of change of displacement
angle. Equation (6) is compared to Eq. (1), where {6;,)} is a
measure of the change in angle across a joint, an effective curva-
ture. By considering a beam segment of length L= ,) and the
definition of a derivative, it can be justified that

— {0(i,n)}

{&
Liiny

(8)

By substitution, it can then be shown that the discrete stiff-
nesses are simply the continuous stiffnesses divided by the length
of the segment over which they act.

[k(i,n)] = M (9)
)

The accuracy of the approximation is good, provided the cur-
vature does not change significantly along the length of each in-
dividual blade segment. This can be managed by the user by care-
ful selection of segment length based on the geometry, properties,
and other model conditions. The direct method was validated us-
ing the tuning approach previously detailed.

2.4.4  Example. The time-history of blade tip deflection for an
actual nonrotating blade on a typical maritime helicopter was cap-
tured on video. Based on the frequency exhibited in the video, an
effective stiffness for an equivalent isotropic uniform beam can be
estimated. If a model of this helicopter is desired, then one of the
following blade models could be developed.

Case 1. If the blade resting on the droop stops is assumed a
cantilever with no initial hinge angle, and the total blade mass is
known, then the blade can be sectioned into segments of equal
length, equal mass, and equal stiffness and damping properties
then can be tuned to achieve similar tip response.

Case 2. If the blade resting on the droop stops is assumed a
cantilever with no initial hinge angle, and the mass distribution as
a function of radius is available, then the blade can be sectioned
into segments with appropriate masses and the appropriate stiff-
ness and damping properties can be found using the deflection/
load fit for a cantilever beam subject to gravity and its own
weight. Figure 3 shows the experimental data compared to the
simulation results for a hingeless blade approximated by different
numbers of blade segments.

Case 3. If the droop stops are modeled using the hinge and
droop stop model described above and the mass distribution as a
function of radius is available, then a different set of equivalent
stiffnesses can be achieved using the deflection/load fit.

Table 1 shows first natural frequency and static deflection re-
sults for the test blade in flap modeled using Bernoulli-Euler
beam theory and the three test cases. Case 1 and the Bernoulli—
Euler beam theory frequencies are similar because both assume
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uniform beam properties. Cases 2 and 3 allow variable mass and
stiffness properties, and therefore agree with the experimental re-
sults, which also include variable mass and stiffness. This valida-
tion case begins to show the suitability of the discrete approach
for modeling beams with variable properties.

3 Model Validation

The numerical simulation is undergoing a lengthy process of
validation to explore the level of applicability of this model to the
blade sailing phenomenon. The characteristic of most concern is
the behavior of the segmented blade as a flexible body. This
means consistency of natural frequencies, coupled and uncoupled,
and consistency of deflected shapes, both static and dynamic. The
vibration properties of helicopter blades are known to change with
blade rotation speed, as the centrifugal and tensile forces in the
blade change its effective stiffness. These effects and the ability of
the simulation to deal with them have been explored. The final
characteristic of concern is the coupling of blade motions due to
structural considerations such as blade twist and elastic axis
offset.

3.1 Blade Bending Behavior. In the blade sailing context,
the behavior of the blade in bending, especially in flap, is of
specific interest. A wide variety of continuous blade and beam
bending models exist, and the performance of the rigid-segment

Table 1 Summary of results for bending vibration cases

1.0
0.9

linear vertical tip
displacement (z/L)

tip rotation (26/x)

Freq Static

Stiffness Mass (rad/s) A (m)

Model Discrete, Discrete, 7.07 0.307
case 1 uniform” uniform

Bernoulli— Continuous, Continuous, 7.06 0.305
Euler beam uniform uniform

Model Discrete, Discrete, 7.11 0.305
case 2 variable” variable®

Model Discrete, Discrete, 7.11 0.305
case 3 variable variable®

Expt. Continuous, Continuous, 7.11 0.305
variable variable

“Equal joint rotational spring stiffnesses approximate some variable continuous stiff-
ness profile.

®Variable joint rotational spring stiffnesses properly tuned approximate uniform con-
tinuous stiffness.

“Discrete variable masses are chosen to be representative of the real blade, with the
blade tip much lighter than the blade root.
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model was validated against these and experimental data in order
to show the appropriateness of the rigid-segment model for simu-
lating blade behavior.

3.1.1 Large Deflections. Since blade sailing can involve large
deflections, a model that captures bending of a geometrically lin-
ear beam is insufficient. The static flap deflections of a uniform
isotropic beam with a vertical load applied at the tip are shown in
Fig. 4. Ten identical rigid segments were used to model the beam,
and the results are compared to published results [29]. The rigid-
segment results agree very well with the published values.

The large deflections in a dynamics sense were also validated
using a uniform isotropic beam undergoing spin-up from rest to a
constant rotational speed in the horizontal plane. The beam is
extremely flexible in the lead-lag direction, and since the model
applies no damping, it oscillates as a result of the initial rotational
acceleration. The number of segments required to achieve numeri-
cal convergence was examined, and six segments were selected as
a good compromise between solution accuracy and solution
speed. The time-history of beam tip deflection for a six-segment
beam shows a satisfactory agreement, within 4%, with the nonlin-
ear finite element solutions [30,31] in Fig. 5.

3.1.2  Flapping Behavior With Rotational Speed. The bending
frequencies of rotating blades are known to increase with rota-
tional speed as a result of the centrifugal forces acting on the
blade. An assumed mode solution to Lagrange’s equation for a
continuous uniform isotropic beam is used to validate this capa-
bility of the rigid-segment model [32]. Figure 6 shows a fan plot,
which includes the rigid body and first elastic flapping modes of a
blade with six rigid segments. Satisfactory agreement, within
1 rad/s, is shown between the rigid segment solution and the
Lagrangian solution.

3.2 Blade Motion Coupling. The ability of the rigid-segment
model to capture blade motion coupling has been validated using
published cases.

3.2.1 Dynamic (Gyroscopic) Coupling. Classical helicopter
theory textbooks discuss blade motion coupling that occurs be-
tween flap and lead/lag due to the Coriolis coupling when the
blade is rotates at a constant speed. Articulated rotors allow this
coupled motion since motions about the lead/lag hinge and the
bending hinge are essentially unrestrained. A simplified set of
equations of motion is solved to give the moment at the lead/lag
hinge that would be required to restrain the motion of a rigid
articulated blade in lead/lag [32]. This moment is
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N=-2J,08sin 8 (10)

where N is the moment about the lead-lag (z) axis, J,, is the
moment of inertia about the flap (y) axis through the joint instead
of the center of gravity, () is the rotational speed of the hub
(constant), and B is the flap angle. Figure 7 shows that the appli-
cation of an equal and opposite moment N restrains the lead/lag
motions to zero as soon as the initial transient response is re-
moved with light damping.

3.2.2  Inertial Coupling. The definable properties of the model
allow for the mass centers to be offset from the elastic axis, which
is along the (x) axis of the blade segment in question. This causes
a structural coupling of the natural frequencies of vibration such
that most natural modes will contain both a bending and torsional
component.

The inertial coupling between flap and torsion can be shown by
solving for the coupled natural frequencies of an isotropic beam
with a swept tip [17,33]. Lead-lag is also coupled in that the
system is rotated at constant speed in the plane of the sweep angle
and the beam achieves a steady-state deflection in the lead-lag
sense for swept tip angles different from zero.

The first three bending-torsion coupled modes for a beam turn-
ing at 8.3 Hz are shown in Fig. 8. The rigid-segment model agrees
with the published data to within 12% (1 Hz) for the fundamental
mode and within 5% (2 Hz) for the second and third. This under-
prediction can likely be rectified by careful tuning of the root
stiffnesses. In the figure, a rule-of-thumb approach was applied, in

which the root stiffness is 2.15 times the calculated value for the
other joints, provided the beam is uniform and the segment
lengths are consistent. Still, the effects of tip sweep on the fre-
quency trends are well captured.

3.3 Droop and Flap Stop Validation. The behavior of the
droop and flap stops is important for the blade sailing of articu-
lated blades. If the blades come into contact with the stops with
significant kinetic energy, then it is transferred to potential energy,
and the blades can undergo large deflections. The behavior of the
blades when they come into contact with the stops has been vali-
dated against experimental results [11], where the details of the
experimental blade can be found in Ref. [34].

Figures 9 and 10 show the tip deflection and the hinge angle,
respectively, compared with the published experimental data. The
rigid-segment model captures the general shape, magnitudes, and
frequencies of the major blade response characteristics. Similar
differences between numerical and experimental results are shown
in Ref. [13].

4 Conclusions

The approach to helicopter modeling as discussed in this paper
has been shown to attack the problem in a functional and versatile
manner. The generality of the problem definition allows quick and
easy parametric studies of a wide variety of situations. The indi-
vidual components of the model have been validated, and the
most important cases have been carefully discussed.

100
| |— assumed mode solution
90 i3 3
< rigid segment solution
80

first elastic flap mode

frequency (rad/s)
3

10
rigid body flap mode

0 5 10

15 20 25

rotor speed Q (rad/s)

Fig. 6 Variation in flapping frequencies with rotor speed
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The numerical model will be expanded to include an airwake
turbulence model that contains spatially and temporally correlated
turbulence based on statistical information gathered experimen-
tally. The model will then be validated against experimental data
from a series of tests on a scaled aeroelastic blade. The numerical
model can then be used to study the blade sailing phenomenon.
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Appendix: Derivation of General Conservative Expres-
sions

The extension of the general conservative energy expressions
developed in Ref. [22] from the planar to the three-dimensional
case is worth discussing. As an example to illustrate some impor-
tant points, the kinetic energy arising from the horizontal (X) com-
ponent of velocity associated with the masses of the blade seg-
ments of blade n shall be studied.

Before continuing with the description of the model, it is pru-
dent to address some nomenclature. The quantity {rab} is the po-
sition vector {r,} defined in coordinate system b. If the subscript a
refers to a coordinate system, then the position vector identifies
the origin of coordinate system a in b. Transformation matrices
are of the form [R;,] and refer to a rotational transformation from
the a coordinate system to the b coordinate system.

The kinetic energy expression for the three-dimensional case is
given by

N

19 .
Tyin= 5 2 (1 0 0y, 1P (A1)
i=1 ’

where
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Fig. 8 First three flap-coupled frequencies for swept tip beam (experimen-

tal data from Ref. [33])
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where the distance vectors {ry_} and {rp } refer to the globally
defined position of the helicopter center of mass and the
helicopter-defined position of the center of the rotor hub, respec-
tively. The rotational matrix [RB(. B ,.)] given inside the product

operators is equivalent to [Rp o )R].
RO

In comparison, the expression for the kinetic energy arising
from the horizontal component of velocity of the port blade for
the planar model is given by [22]

ng
1o o
Tx(l)ZEE m(i’]) Yc—v081n(0+a)
i=1

i k k
—E sin 0+2 i1y 9+2 é(j,l) di.)
k=1 J=1 =1
1 : i ’
+ > sin| 6+ E ) 0+ 2 %,1) i)
j=1 Jj=1

(A2)

where the planar orientation of the helicopter body is given by 6
and the flap orientations of the blade segments are given by ¢; ).
The length of each blade segment is given by d; ;), and the center
of mass is assumed to act halfway along the segment length. The
quantity Y describes the horizontal position of the helicopter cen-
ter of mass, and the quantity (v sin(#+a)) gives the horizontal
distance from the helicopter center of mass to the blade attach-
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Fig. 10 Droop stop test flap hinge angle (experimental data
and published results from Ref. [11])
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H[RB(M)B(%LH)] [RB(h,n)B(h—l,n)] H [RBw,n)B(ﬁ-l,n)] {rb(i,n)g_ }
a=1 pB=h+1 (&m)

ment point, and @ and v are geometrical constants defined in Ref.
[22].

The indices i and k represent the summation of equivalent phe-
nomenon in both expressions and are subject to the index replace-
ment rule described in Ref. [22]. The summation of cascading
angles, given by index j in Eq. (A2), which is responsible for
causing the index replacement rule, appears in a slightly different
form in Eq. (A1). In the three-dimensional case, the expressions
for blade position, velocity, and angular velocity are derived in
vector form and are given in the global coordinate system through
a series of cascading matrix transformations, which are given by
the product operator, also in index j.

Two cases that result from the extension of the procedure into
three dimensions are worth mentioning. First, when the energy
expressions are differentiated with respect to time, an additional
summation appears, shown in Eq. (Al) in index h. This results
from the fact that the product rule must be applied to all the
matrices in the cascading matrix product, since all depend on the
variable time. When differentiating with respect to configuration
coordinates or their derivatives as with Lagrange’s equation, the
differentiation quantity appears in only one matrix in each product
and therefore the extra summation does not result. The product
indices « and B result from the same phenomenon, and simply
allow the cascading rotational matrix to which the time derivative
is applied to be advanced from one to the next.

Second, a complete expression of the kinetic energy resulting
from the horizontal component of velocity requires that this quan-
tity be summed over the total number of blades present in the
system (given as an index in n). The index replacement rule does
not apply to this summation index since the degrees of freedom
for each blade are independent and differentiation with respect to
any one of them will result in zero components for all blades
except the one of interest.

The derivation of all the required expressions for Lagrange’s
equation can be arrived at straightforwardly provided care is taken
to ensure that the index replacement rule is applied only when
necessary based on the logic given in Ref. [22].
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1 Introduction

In his classical treatise on the theory of sound [1], Rayleigh has
introduced the notion of a quotient of two quadratics representing
the potential and kinetic energies of a vibrating system. Since
then, Rayleigh quotient has been widely applied in the analysis of
many vibrating systems and their associated linear algebraic ei-
genvalue problems. Rayleigh quotient provides a variational ap-
proach to estimate the eigenvalues of an algebraic, generalized
eigenvalue problem, as in the case of determining the natural fre-
quencies of a vibrating system. Numerical methods to solve ei-
genvalue problems such as the shifted inverse power method rely
on the properties of Rayleigh quotients for speedier convergence
[2]. Thus, the practical utility of the Rayleigh quotient is wide
ranging.

Traditionally, and in many textbooks on vibration analysis [3,4]
and linear algebra [2,5], a Rayleigh quotient is defined as a ratio
of two quadratics. In the case of a generalized eigenvalue problem
involving two real and symmetric matrices A and B, the Rayleigh
quotient is defined as follows:

T

R ="A%  Av-:\B
u)= . =
u"Bu v v

(EVP) (1)

where the eigenvalue problem is abbreviated as EVP.

The stationarity properties of this “classical” Rayleigh quotient
are well established [2]. The objective of the present investigation
is to explore whether similar Rayleigh-like quotients with station-
ary properties exist for a vibrating system with dissipation. Dis-
crete vibrating systems are chosen here for the purpose of illus-
tration; generalization of the results to continuous systems is
straightforward.

This paper is presented as follows. Rayleigh quotients for dis-
crete systems are defined in Sec. 2. Three quotients are introduced
in the case of a viscously damped system and their stationary
properties are investigated in Secs. 3 and 4. Rayleigh quotients in
the context of nonviscously damped systems are studied in Sec. 5.
The importance of Rayleigh quotients studied here is illustrated in
Sec. 6, and main conclusions emerging from this study are sum-
marized in Sec. 7. Throughout this study, the terms modes and
eigenvectors are used interchangeably.

lCorresponding author. Assistant Professor, Department of Mechanical Engineer-
ing, The University of British Columbia, 2054—-6250 Applied Science Lane, Vancou-
ver, B.C., V6T 1Z4, Canada.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received September 20, 2006; final
manuscript received December 2, 2007; published online August 15, 2008. Review
conducted by N. Sri Namachchivaya.

Journal of Applied Mechanics

Copyright © 2008 by ASME

the stationarity property of Rayleigh-like quotients for dissipative systems. Stationarity
properties are examined based on the perturbation theory. It is shown that Rayleigh
quotients with stationary properties exist for systems with proportional viscous and non-
viscous damping forces. It is also shown that the stationarity property of Rayleigh quo-
tients in the case of nonproportional damping (viscous and nonviscous) is conditional
upon the diagonal dominance of the modal damping matrix. [DOI: 10.1115/1.2910898]

2 Rayleigh Quotients for Discrete Systems

Small oscillations of a discrete, linear vibrating system with
viscous damping about its equilibrium position are governed by
the following equations of motion:

M3 +Cx + Kx =f )

where the matrices M, K, and C are, respectively, the mass, stiff-
ness, and damping matrices and the vectors x and f denote the
displacement response and applied forces, respectively. In the ab-
sence of damping and applied forces, the above equation simpli-
fies to

Mx+Kx=0 (3)

The above equation leads to a linear, algebraic eigenvalue prob-
lem for the natural frequencies of free vibration, denoted by w,
given as follows:

Ku =\Mu (4)

where the eigenvalue \ is related to the frequency via w=\A\.
Here, the positive branch of the square-root operation is assumed.
u is the eigenvector (mode shape) associated with the eigenvalue
N (or vibration mode with natural frequency w). For linear sys-
tems that obey Rayleigh’s reciprocity principle, the matrices M
and K are symmetric. This implies that the solutions of the eigen-
value problem in Eq. (4), N and u, are real.

In the context of vibration analysis of undamped systems, the
two quadratic functions in the Rayleigh quotient assume the
physical meaning of the kinetic and potential energies. Thus, as-
sociated with any admissible deformation vector (¢p), one can
define the following quantities:

U=¢'K$p, T=¢p'Md

U T

Rip)=7= 258

S Mo

where 7 and U are the kinetic and potential energies of the system
and R is the classical Rayleigh quotient.

However, when systems with dissipation are considered, one is

faced with three quadratics. In this situation, one can define three

quotients as follows:

U=¢'Kp, T=d'Mep, D=¢'Co

(5)

u 'K
i =L SK

D c
Ry(¢p) = T :fTTZ)’
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D _¢'Co
U ¢'Ke
Note that for Rayleigh quotient to be finite, the denominator terms
in the above equation should not be equal to zero. This requires
that M be positive definite for R; and R, to be finite, and K be
positive definite for R to be finite. For majority of vibrating sys-
tems, M is positive definite while K need not be. Thus, the exis-
tence of Rj is case specific.

It is the objective of this work to investigate the stationarity
properties of the quotients defined in Egs. (5) and (6). The proof
of stationary property of the quotient defined in Eq. (5) is well
known [2,5,6]. However, it is repeated here for the sake of com-
pleteness and also since the proof of stationarity for other quo-
tients closely follows a similar procedure.

Ry(¢) = (6)

2.1 Stationarity of R(¢). Let a vector ¢ be chosen such that
it is close to one of the eigenvectors (modes) u, of the system so
that we can express ¢ as

CA
¢=Ec,~ui=u,+2q~ui, e=—<1 (7)
i

i#r Cr

where ¢; is a small real quantity. Now, the Rayleigh quotient reads

&K u{Ku,+22i#r eu!Ku, + 0(&)

R(¢) = (®)

d'Mep u'Mu, + ZE#r euMu,+ 0(&)

here, the symmetry of M and K is assumed. Due to the orthogo-
nality properties of the eigenvectors [2,5],

u/Mu;=35;, u/Ku;=0, u/Ku;=\ 9)
Equation (8) simplifies to
N+ 0()
R(p)=—"—5-=\(1+0(& 10
() 140 A1+0(€)) (10)

The above result proves the stationarity of the Rayleigh quotient,
i.e., first order changes in ¢ lead to second order changes in R(¢).
When ¢ is close to one of the eigenvectors, the corresponding
value of the quotient is stationary. Further choosing the first ei-
genvector as the trial vector ¢ leads to a minimum value of R(¢).
R(¢) is maximum when the trial vector is close to the eigenvector
corresponding to the highest eigenvalue. For intermediate eigen-
vectors, R(¢) is neither a minimum nor a maximum, i.e., R(¢) is
at a saddle point. A mini-max (or inf-sup) principle due to Courant
and Fischer applies in this case [2,6].

3 Proportional Damping

We consider first the case of proportional damping. Here, pro-
portional damping is defined in the sense that the same vector ¢
simultaneously diagonalizes the three quadratics 7, U, and D. In
other words, the three matrices M, K, and C can be simulta-
neously diagonalized. Although a viscous damping matrix of the
form C=aM+ BK is the most widely understood model of a pro-
portional damping model, it is only a subset of a wider class of
models [7]. The necessary and sufficient conditions for propor-
tional damping are established in Ref. [7] and revisited in Refs.
[8—11]. Adhikari [10] showed that viscously damped linear sys-
tems will have classical normal modes if and only if the damping
matrix can be represented by

(@)  C=MB,(M"'K)+KB,(K™'M)
or
(b)  C=By(KM™)M+B, (MK~ K

where B;(¢) are smooth analytic functions in the neighborhood of

all the eigenvalues of their argument matrices. Rayleigh’s result
can be obtained directly from this “generalized proportional

061005-2 / Vol. 75, NOVEMBER 2008

damping” as a special case by choosing each matrix function B;(¢)
as a real scalar times an identity matrix, that is B;(*)=a,I. In the
case of proportionally damped systems, the eigenvectors are real
but the eigenvalues are not, i.e., the undamped modes are also the
modes of the proportionally damped system. Thus, the proof of
stationarity of the first Rayleigh quotient R () is the same as that
given in Sec. 2.1.

We consider the second Rayleigh quotient associated with any
admissible deformation vector ¢ as defined in Eq. (7),

u'Cu, + 22’_# eulCu,+0(&)

Ry(¢p) = (11)

' M u'Mu, + 22#’_ euMu,+ O(€)

here, the symmetry of M and C is assumed. Due to the orthogo-
nality properties of the eigenvectors,

T
u;Mu;=5; (12)
We define
u/Cu;=Cl, u/Cu;=Cj (13)
With the above definition, Eq. (11) can be expressed as
Cl,+2%,.,6C) +0(€)
Ry(¢) = - (14)

1+0(&)

When damping is proportional, the matrix C}, is diagonal, i.e.,
C! =0 for i # r. In this case, the above equation simplifies to

C' +0(é)
= C (1+0(&

1+0(€) l (<)
which proves the stationarity of Rayleigh quotient in the case of a
proportionally damped system.

Similar proof can be constructed for R3(¢). The equation cor-

responding to Eq. (15) in this case will read as
C,+0(&) ¢

ir0@ o)

Ry(¢) = (15)

Ry(¢) = (16)

r

4 Nonproportional Damping

We consider the case of nonproportional damping wherein the
damping matrix C cannot be diagonalized simultaneously with M
and K matrices. Consequently, the vector ¢ is not necessarily real.
Vibrating systems with nonproportional damping are known to
possess complex modes in general. Physically, the complex modes
represent nearly standing waves. For systems with small dissipa-
tion, a perturbation theory originally due to Rayleigh [1] can be
used to represent the complex modes in terms of the real modes of
the undamped system.

According to the first order perturbation theory [12], the com-
plex modes of a viscously damped system are related to the cor-
responding undamped modes by

’
Z,=~u,+1> ayu, where oy, = az)annz <1

k#n wy k

(17)

The undamped modes are mass normalized i.e., u,{Munz 1. In the
above equation, C’ is the damping matrix in modal coordinates,
ie., C,L,I:u,{Cun. The assumption in the perturbation theory is that
the terms of the order aﬁn are very small and hence negligible.
When k and n refer to two adjacent modes, the coefficient «ay,
can be related to the modal overlap factor defined as py,
={,0,/(0p-w,) and the ratio ,=C, /C, by a
=~ (1/2) tyn Yin- Notice that 1y, is a measure of the diagonal domi-
nance of the C' matrix. uy, is a measure of the spacing of adja-
cent modes normalized with respect to the half power bandwidth
of each mode. Thus, significantly complex modes are to be ex-
pected when the modal damping matrix is not diagonally domi-
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nant and the modal overlap is not small. Unless the modal overlap
factor is of the order of unity, the second and higher order powers
of the ay, can be safely ignored. If not, then the perturbation
expansion has to be extended suitably until the imaginary part of
the complex mode converges. Adequacy of the first order theory
for systems with small damping has been shown in Ref. [12].

Since the complex eigenvectors z;, i=1---n form the complete
basis in an n dimensional complex vector space, any arbitrary
complex vector ¢ can be written as

l/l= E CZi (18)
i
We select a vector close to z,, which can be written as
Ci
W=z,+ X ez, lel=|~| <. (19)
: c
i#r r

We consider the first real valued Rayleigh quotient associated
with the above trial vector,

WKy K422, Re)zKe 4 0( )

YMy Mz, + 22#’ R(e)z "Mz, + O(|€?)

Ri(¢) =

(20)

Noting the orthogonality properties given in Eq. (9), one can de-
duce the following equations:

7'Mz, =1+ 0(d?) (21)
and
2Mz, = 0(a?) (22)
Similarly with K, one can show
2Kz, = 0 + 0(P) (23)
and
7Kz, = 0(a?) (24)
Substituting Egs. (21)—(24) in Eq. (20), one obtains
R = 20D 0D i oy

1+0(a) +0(é)

which proves the stationarity of R ().
We consider the second real valued Rayleigh quotient defined
as follows:

Ro() = zz:f; (26)
Substituting Eq. (17) in the above equation leads to
JiCw 2Cz, + ZEM R(e)zf'Cz,+ O(| )
SO e 22, Rle)iMz,+O(|e)
27)

Now zfl Cz, can be expanded as

2z, = [uz-— 12 akru,{]C[u,.+ 12 ak,uk}

k#r k#r

=C =1 oy [ulCu, - u'Cu]+ 0(a?) = C! + O(?)
k#r

(28)
Note that C is assumed to be symmetric in simplifying the above

equation. Similarly, one can write

Journal of Applied Mechanics

H T T
7 Cz,= {"i - 12 akiuk:|C|:ur+ 12 akruk]

k#i k#r

= Cj =12 ay,Cp+ 12, @, Cho+ 0(a)
k#i k#r

=C) +0(a)+ 0(a?) (29)
Substituting Egs. (21) and (22), and Egs. (28) and (29) in Eq. (27),

one obtains

C,+22,  R()C)+0(90(a) + O(&) + 0(?)

ir

1+ 0(€) +0(a?)

Ry () =
(30)

It can be seen that first order changes in ¢ lead to first order
changes in R,(i). However, if the modal damping matrix is di-
agonally dominant, i.e.,
C!
C—‘f <1
then first order changes in ¢ lead to second order changes in
R,(#). In this case, stationarity of the Rayleigh quotient is ob-
tained.
Returning to the third quotient R3(),
_yicy
Rs(4p) =
YKy
C,+22,  R(€)C)+0(0(a) + O(&) + 0(?)

(31

wf +0(&) +0(a?)
(32)

The above quotient is not stationary in general. However, when
the modal damping matrix is diagonally dominant in accordance
with Eq. (31), stationarity of R3(#) can be shown as earlier (see
Sec. 3).

In the case of a complex vector ¥, one is also tempted to define
complex valued Rayleigh quotients by replacing the Hermitian
transpose (complex conjugate transpose) with the ordinary trans-
pose operator. The stationarity property of these complex valued
quotients, however, cannot be shown. Hence, the discussion of
these quotients will not be pursued any further.

5 Nonviscous Damping

In this section, we consider general linear damping models,
described by convolution integrals of the generalized coordinates
over appropriate kernel functions. The equation of motion of a N
degrees-of-freedom nonviscously damped system is given by

1

M (1) +f G(t— nx(7)d7+ Kx(t) =f(2) (33)
Here, G(¢) is a NX N matrix of kernel functions. It will be as-
sumed that G(7) is a symmetric matrix so that reciprocity auto-
matically holds. In the special case when G(r)=C4(t), where &(r)
is the Dirac delta function and C is a NXN matrix, Eq. (33)
reduces to the standard form for viscous damping.

Taking the Fourier transform of Eq. (33), the eigenvalue equa-
tion can be expressed as

- N2Mz, + 1N,G(\,)z, + Kz, = 0 (34)

where G(\) is the Fourier transform of G(z). In general, G(\) is a
complex valued function of N. For viscously damped system,
G(\)=C, VY \. Equation (34) is a nonlinear eigenvalue problem. In
contrast with the viscously damped case, the number of eigenval-
ues will not necessarily be equal to 2N, since additional eigenval-
ues may be introduced by the form of the functions G(\,,). Wood-
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house [12] and Adhikari [13] have treated this problem using a
first order perturbation method assuming the damping to be small.
We suppose the undamped problem has eigenvalues (natural fre-
quencies) w, and eigenvectors (modes) u,,. The complex eigenval-
ues can then be expressed as

= E o, +16,(Fw,)2 (35)

where G (w,)=u;G(w,)u, is the frequency dependent damping
matrix expressed in normal coordinates. Since the inverse Fourier
transform of G(w) must be real, it must satisfy the condition
G(-w)=G(w)*, where (¢)* denotes complex conjugation. It fol-
lows that the eigenvalues of the generally damped system appear
in pairs A and —\* (unless \ is purely imaginary). The first order
approximate expression for the complex eigenvectors can be ob-
tained in a way similar to that used for the viscously damped
system (as was first given by Rayleigh [1]). The result is

wnGlin ( wn)

Z, = U, + 12 Bty where By, = (36)

2 2
k#n (wn - wk)

Note that the eigenvectors also appear in complex conjugate pairs.
Since, in general, G, (w,) will be complex, in contrast to the
viscously damped case, the real part of natural frequencies and
mode shapes do not coincide with the undamped ones. Adequacy
of the first order theory for systems with small damping has been
investigated in Refs. [12,13].

Since the complex eigenvectors z;,i=1---N form the complete
basis of an N-dimensional complex vector space, any arbitrary
complex vector ¢ can be expressed as

=2 czi (37)
i
We consider a vector close to z,, which can be written as
Gi
Y=z,+ 2 ez le|=| 7| <1 (38)
‘ c
i#r r

Replacing the matrix G(w,) with M and noting the orthogonality
properties given in Eq. (9), one obtains

2Mz,=1+0(8P) (39)
z'Mz,= 0(|B) (40)
Similarly with K, one obtains
2Kz, = o} + O(|B) (41)
2Kz, = 0(|8]) (42)

We consider the first Rayleigh quotient

SKY ) szKz,+ ZE#r%(ei)leKz,+ O(le?

R() = =
UMY g 0D R Mz, + O(leP)

(43)

Substituting Eqgs. (39)-(42) in the above equation, one obtains

Wl +0(BD +0(&)
1+0(BP)+0(&)

R/(p) = w(1-0(8)  (44)

which proves the stationarity of R, ().
The second and third Rayleigh quotients involving the damping
term need to be carefully defined. The difference between the

viscous and the nonviscous case is that the (effective) damping
matrix for the nonviscous case is complex valued and a function

061005-4 / Vol. 75, NOVEMBER 2008

of frequency. Therefore, in order to define a meaningful Rayleigh
quotient, we need to select a value of frequency. If we are inter-
ested in studying the stationary behavior of rth mode, then it is
logical to select the frequency value as w,. We define the real
valued Rayleigh quotient for a nonviscously damped system as

_[#Gw)w

RZ( l,b, wr) - llfHMl/l (45)

For a viscously damped system G(w,)=C, ¥V r and because C is a
real matrix, Eq. (45) reduces to Eq. (26) as a special case. There-
fore, Eq. (45) can be viewed as a generalization of the Rayleigh
quotient defined in Eq. (26).

Substituting Eq. (36) in the above equation leads to

Y'G(w)y
WMy

[£/Glw)z,+22, R(€)2G(w,)z, +O(|eP)]

Ry(h) =

Mz, + 221_# R(e)zi'Mz, + O(|€?)
(46)

The first term in numerator can be expressed as

k#r k#r

6 (0,)z, = [ > ﬁ:,.u,f]a<w,.>[u,+ > ﬁk,uk]

= ",TG(wr)"r - 12 (B;(kr - Bkr)[uZG(wr)ur

k#r

-u'G(w,)u] +0(B?)

= G;r+ 212 j(ﬂkr)[u]{G(wr)ur

k#r
—u!G(w,)u]+0(BP)

=G, +0(3(B) +0(BP) (47)

where G/ =u!G(w,)u,. Note that G(w,) is assumed to be symmet-
ric in simplifying the above equation. From the second term in the
numerator of Eq. (46), one has

k#i k#r

ZIHG(wr)Zr= |:MZT_ IE ﬁ:iuZ]G(wr)|:ur+ ZE IBkruk:|

= uZG(wr)ur - 12 B:iuZG(w")uV
k#i

+1 Bl G(w)u, + 0(|B2)

k#r

=G +0(B)+0(8) (48)

where G| =u!G(w,)u,.
Substituting Eqs. (47), (46), (45), (44), (43), (42), (41), and (40)
in Eq. (46), one obtains
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(G, +22, R(€)G/,+O0(0(B) +0(&) + 0(3(B) + O(|B)]

R =
W 1+0(&) + Ol
- G| +23:,,R(€)|G}| + 0(e O(B) + O(€)) + 0(3(B) + O(IB]*) (49)
1+0(e) +0(8P)
[
The last line in the above equation follows from the triangle in- |G}
equality. The terms involving O(J(B)) are smaller than O(|8|) m <1 (51)

terms. Moreover, for lightly nonviscous systems, the terms involv-
ing O(J(B)) are expected to be smaller than the O(FR(B)) terms
[14]. As a result, one expects to have the inequality

0(3(B)) < O(R(B) < 0(B) (50)

From Eq. (49), it can be seen that first order changes in ¢ lead to
first order changes in R,(i). However, if the complex modal
damping matrix is diagonally dominant, i.e.,

WG _ 1Ol 22, R(e)|Gi|+0(90(B) + () + 0(3(B)) + O(|BP)

then first order changes in ¢ lead to second order changes in
Ry(1). In this case, stationarity of the Rayleigh quotient is
obtained.

Returning to the third quotient, the equation corresponding to
Eq. (46) in the case of R3(¢) is

R3(¢) = lpHKlp

The above quotient is not stationary. However, when the modal
damping matrix is diagonally dominant in accordance with Eq.
(31), stationarity of R5() holds.

6 Application of Rayleigh Quotients

In the case of a single degree of freedom system with viscous
damping the three quotients simplify to R;=w?, R,=2{w, and
R;=2{/w, where w and { denote the natural frequency and the
critical damping factor, respectively. The response of the system
in the time domain is described by exp(={wi—iw\1-%). We
note that R, governs the decay rate (or real part of the complex
eigenvalue) of vibration in the time domain. The same will be true
for a multidegree of freedom system, provided that its response
can be decomposed into a single degree of freedom system using
modal summation i.e., damping is proportional [3].

The Rayleigh quotient R, and its usefulness in solving the ei-
genvalue problem associated with the undamped system are well
documented [2,3,5]. Consequent to the stationary property of R}, a
theorem originally due to Rayleigh, known as Rayleigh’s principle
or interlacing theorem, gives the influence of constraints. It states
that the eigenvalues of the constrained system (w’) interlace with
the eigenvalues of the unconstrained system (w) such that ,
= (1)"' = W,41-

Similar results follow from the stationarity of R, and Rj3. In this
context, we refer to Rayleigh’s original statement in Sec. 88 of
Ref. [1]: “... theorems, of importance in other branches of sci-
ence, may be stated for systems such that only T and F, or only V
and F, are sensible.” We note that T=7, V=U, and F=D in the
notation of the present paper. Thus, stationarity of R, implies that
the decay rates of each normal mode are stationary. The interlac-
ing theorem would suggest that the decay rates of each normal
mode also interlace when a constraint is applied. The interlacing
property was discussed in Sec. 88 of Ref. [1] and a less known
work of Rayleigh [15]. The present study extends these ideas to
the general case of nonconservative systems with viscous or non-
viscous dissipative processes.
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In a viscoelastic system, one deals with elastic potentials and
dissipative potentials. Stationarity of R; has important conse-
quences for such problems, especially in conjunction with the
interlacing theorem. A noteworthy work on applying the Rayleigh
quotients to determine the elastic and material loss constants of
orthotropic sheet materials was undertaken in Refs. [16,17].

Our primary aim in this work has been to show the range of
applicability of stationarity principles in nonconservative viscous
and nonviscous systems. Further application of these results re-
mains to be explored in future studies.

7 Conclusions

Rayleigh quotients are revisited in the context of dissipative
systems. The study of their stationarity properties leads to the
following conclusions.

1. In the case of a proportionally damped viscous system, the
three Rayleigh quotients associated with the damped system
are stationary.

2. In the case of a nonproportionally damped system, the Ray-
leigh quotient involving mass and stiffness matrix is station-
ary while the remaining two involving damping matrix are
not. Stationarity in this case is subject to the diagonal domi-
nance of the modal damping matrix. For an arbitrarily cho-
sen viscous damping matrix, the stationarity property does
not hold true. However, this negative conclusion is to be
balanced by the wide variety of practical engineering struc-
tures where the modal damping is diagonally dominant; con-
sequently, Rayleigh quotients are stationary.

3. In the case of a nonviscously damped system, the Rayleigh
quotient involving mass and stiffness matrix is still station-
ary while the remaining two involving the frequency depen-
dent damping matrix are not. Stationarity in this case is sub-
ject to (a) the diagonal dominance of the absolute value of
the frequency dependent complex modal damping matrix,
and (b) light nonviscous damping. For an arbitrarily chosen
nonviscous damping function, 